目标检测汇总

https://handong1587.github.io/deep_learning/2015/10/09/nlp.html

MethodVOC2007VOC2010VOC2012ILSVRC 2013MSCOCO 2015Speed
OverFeat   24.3%  
R-CNN (AlexNet)58.5%53.7%53.3%31.4%  
R-CNN (VGG16)66.0%     
SPP_net(ZF-5)54.2%(1-model), 60.9%(2-model)  31.84%(1-model), 35.11%(6-model)  
DeepID-Net64.1%  50.3%  
NoC73.3% 68.8%   
Fast-RCNN (VGG16)70.0%68.8%68.4% 19.7%(@[0.5-0.95]), 35.9%(@0.5) 
MR-CNN78.2% 73.9%   
Faster-RCNN (VGG16)78.8% 75.9% 21.9%(@[0.5-0.95]), 42.7%(@0.5)198ms
Faster-RCNN (ResNet-101)85.6% 83.8% 37.4%(@[0.5-0.95]), 59.0%(@0.5) 
SSD300 (VGG16)72.1%    58 fps
SSD500 (VGG16)75.1%    23 fps
ION79.2% 76.4%   
AZ-Net70.4%   22.3%(@[0.5-0.95]), 41.0%(@0.5) 
CRAFT75.7% 71.3%48.5%  
OHEM78.9% 76.3% 25.5%(@[0.5-0.95]), 45.9%(@0.5) 
R-FCN (ResNet-50)77.4%    0.12sec(K40), 0.09sec(TitianX)
R-FCN (ResNet-101)79.5%    0.17sec(K40), 0.12sec(TitianX)
R-FCN (ResNet-101),multi sc train83.6% 82.0% 31.5%(@[0.5-0.95]), 53.2%(@0.5) 
PVANet 9.081.8% 82.5%  750ms(CPU), 46ms(TitianX)

Leaderboard

Detection Results: VOC2012

Papers

Deep Neural Networks for Object Detection

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

MultiBox

Scalable Object Detection using Deep Neural Networks

Scalable, High-Quality Object Detection

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Object Detectors Emerge in Deep Scene CNNs

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

NoC

Object Detection Networks on Convolutional Feature Maps

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

Fast R-CNN

Fast R-CNN

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN in MXNet with distributed implementation and data parallelization

YOLO

You Only Look Once: Unified, Real-Time Object Detection

Start Training YOLO with Our Own Data

R-CNN minus R

AttentionNet

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

SSD

SSD: Single Shot MultiBox Detector

为什么SSD(Single Shot MultiBox Detector)对小目标的检测效果不好?

Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

Adaptive Object Detection Using Adjacency and Zoom Prediction

G-CNN

G-CNN: an Iterative Grid Based Object Detector

Factors in Finetuning Deep Model for object detection Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

We don’t need no bounding-boxes: Training object class detectors using only human verification

HyperNet

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

MultiPathNet

A MultiPath Network for Object Detection

CRAFT

CRAFT Objects from Images

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

Weakly supervised object detection using pseudo-strong labels

Recycle deep features for better object detection

MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

Multi-stage Object Detection with Group Recursive Learning

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

PVANET

PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

GBD-Net

Gated Bi-directional CNN for Object Detection

Crafting GBD-Net for Object Detection

StuffNet

StuffNet: Using ‘Stuff’ to Improve Object Detection

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

Hierarchical Object Detection with Deep Reinforcement Learning

Learning to detect and localize many objects from few examples

Speed/accuracy trade-offs for modern convolutional object detectors

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

Detection From Video

Learning Object Class Detectors from Weakly Annotated Video

Analysing domain shift factors between videos and images for object detection

Video Object Recognition

Deep Learning for Saliency Prediction in Natural Video

T-CNN

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

Object Detection from Video Tubelets with Convolutional Neural Networks

Object Detection in Videos with Tubelets and Multi-context Cues

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

CNN Based Object Detection in Large Video Images

Datasets

YouTube-Objects dataset v2.2

ILSVRC2015: Object detection from video (VID)

Object Detection in 3D

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

Salient Object Detection

This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

http://i.cs.hku.hk/~yzyu/vision.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

Predicting Eye Fixations using Convolutional Neural Networks

Saliency Detection by Multi-Context Deep Learning

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

Shallow and Deep Convolutional Networks for Saliency Prediction

Recurrent Attentional Networks for Saliency Detection

Two-Stream Convolutional Networks for Dynamic Saliency Prediction

Unconstrained Salient Object Detection

Unconstrained Salient Object Detection via Proposal Subset Optimization

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

Salient Object Subitizing

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

A Deep Multi-Level Network for Saliency Prediction

Visual Saliency Detection Based on Multiscale Deep CNN Features

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

Deeply supervised salient object detection with short connections

Weakly Supervised Top-down Salient Object Detection

Specific Object Deteciton

Face Deteciton

Multi-view Face Detection Using Deep Convolutional Neural Networks

From Facial Parts Responses to Face Detection: A Deep Learning Approach

Compact Convolutional Neural Network Cascade for Face Detection

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

Supervised Transformer Network for Efficient Face Detection

UnitBox

UnitBox: An Advanced Object Detection Network

Bootstrapping Face Detection with Hard Negative Examples

Grid Loss: Detecting Occluded Faces

A Multi-Scale Cascade Fully Convolutional Network Face Detector

MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

Datasets / Benchmarks

FDDB: Face Detection Data Set and Benchmark

WIDER FACE: A Face Detection Benchmark

Facial Point / Landmark Detection

Deep Convolutional Network Cascade for Facial Point Detection

A Recurrent Encoder-Decoder Network for Sequential Face Alignment

Detecting facial landmarks in the video based on a hybrid framework

Deep Constrained Local Models for Facial Landmark Detection

People Detection

End-to-end people detection in crowded scenes

Detecting People in Artwork with CNNs

Person Head Detection

Context-aware CNNs for person head detection

Pedestrian Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

Deep Learning Strong Parts for Pedestrian Detection

Deep convolutional neural networks for pedestrian detection

New algorithm improves speed and accuracy of pedestrian detection

Pushing the Limits of Deep CNNs for Pedestrian Detection

  • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
  • arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

Is Faster R-CNN Doing Well for Pedestrian Detection?

Reduced Memory Region Based Deep Convolutional Neural Network Detection

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

Multispectral Deep Neural Networks for Pedestrian Detection

Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

Boundary / Edge / Contour Detection

Holistically-Nested Edge Detection

Unsupervised Learning of Edges

Pushing the Boundaries of Boundary Detection using Deep Learning

Convolutional Oriented Boundaries

Richer Convolutional Features for Edge Detection

Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

Fruit Detection

Deep Fruit Detection in Orchards

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

Others

Deep Deformation Network for Object Landmark Localization

Fashion Landmark Detection in the Wild

Deep Learning for Fast and Accurate Fashion Item Detection

Visual Relationship Detection with Language Priors

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

Deep Cuboid Detection: Beyond 2D Bounding Boxes

Object Proposal

DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

Scale-aware Pixel-wise Object Proposal Networks

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

Learning to Segment Object Proposals via Recursive Neural Networks

Localization

Beyond Bounding Boxes: Precise Localization of Objects in Images

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

Weakly Supervised Object Localization Using Size Estimates

Localizing objects using referring expressions

LocNet: Improving Localization Accuracy for Object Detection

Learning Deep Features for Discriminative Localization

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

Tutorials

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

Projects

TensorBox: a simple framework for training neural networks to detect objects in images

Object detection in torch: Implementation of some object detection frameworks in torch

Using DIGITS to train an Object Detection network

FCN-MultiBox Detector

Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

Introducing automatic object detection to visual search (Pinterest)

Deep Learning for Object Detection with DIGITS

Analyzing The Papers Behind Facebook’s Computer Vision Approach

**Easily Create High Quality Object Detectors with Deep Learning **

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

Object Detection in Satellite Imagery, a Low Overhead Approach

You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

Faster R-CNN Pedestrian and Car Detection

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: IoU (Intersection over Union)是计算两个区域重叠的程度的一种指标,常用于目标检测中评估预测框和真实框的匹配情况。 IoU可以有以下几种变形: - mIoU(mean IoU):对于数据集中所有样本,计算每一类的IoU并取平均值。 - gIoU(generalized IoU):对于两个区域A、B,gIoU计算如下:gIoU(A,B) = IoU(A,B) - IoU(A,B') + 1,其中B'是与B不相交的区域。 - cIoU(complete IoU):对于两个区域A、B,cIoU计算如下:cIoU(A,B) = IoU(A,B) - IoU(A,B') - IoU(A',B) + IoU(A',B') + IoU(A,B),其中A'、B'是与A、B不相交的区域。 - CIoU(confidence IoU):CIoU在cIoU的基础上再加入了预测框的置信度因素,公式如下:CIoU(A,B) = cIoU(A,B) - p2 * v(A) / (v(A) + v(B)),其中p2是置信度的超参数,v(A)和v(B)分别表示区域A、B的面积。 常见的目标检测任务常常使用mIoU作为性能度量指标。 ### 回答2: 目标检测中的交并比(IOU)是一种衡量检测框与真实框之间重叠程度的指标。在目标检测任务中,IOU通常用来评估检测结果的准确性。 在实际应用中,研究者对IOU进行了一些变形和扩展,以更好地适应不同的场景和需求。 1. GIOU(Generalized Intersection over Union):GIOU是对IOU的一种改进,考虑了目标框的尺寸和位置信息,同时考虑了检测框和真实框之间的平移和缩放关系。 2. DIOU(Distance-IoU):DIOU基于IOU和目标框的中心距离进行了修改。它考虑了物体的大小和位置信息,并通过计算中心距离来惩罚检测框与真实框之间的重叠不足。 3. CIOU(Complete-IoU):CIOU是对DIOU的改进,它还考虑了宽高比的一致性。CIOU通过计算对角线距离来衡量两个框之间的距离,从而更好地描述检测框和真实框之间的相似度。 以上是目标检测中常用的IOU变形的汇总。这些改进方法能够更准确地评估检测结果的质量,并帮助提升目标检测算法的性能和准确性。研究者们不断尝试更多的变体,并希望能够找到更好的方式来衡量目标检测的结果。 ### 回答3: 目标检测中的Intersection over Union(IoU)是一种常用的评估指标,用于衡量预测框与真实标注框之间的重叠程度。除了传统的IoU指标外,还有一些关于IoU的变形方法。 首先是GIoU(Generalized IoU),它通过计算预测框与真实标注框的最小闭包矩形(minimum enclosing rectangle,MER)的面积和真实标注框的面积之比来进行衡量。相比传统的IoU,GIoU考虑了预测框与真实标注框之间的位置偏移,能够更好地评估不同形状的目标。 接下来是DIoU(Distance IoU),它在GIoU的基础上还考虑了预测框与真实标注框之间的中心点距离。DIoU可以有效地解决多目标检测中的crowding问题,改进了目标之间的重叠度量。 还有CIoU(Complete IoU),它在DIoU的基础上进一步考虑了长宽比的相似性。CIoU使用一个参数来衡量长宽比的差异,可以更加准确地评估目标的匹配程度。 此外,还有EIoU(Efficient IoU)等其他变形方法,它们主要通过改进IoU的计算方式来提高检测算法的效率。 总的来说,这些IoU的变形方法在目标检测中起到了衡量目标检测精度的作用,能够更好地评估预测框与真实标注框之间的重叠程度,从而提高目标检测算法的准确性和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值