人脸关键点序号106个 98个

本文详细解析了人脸关键点的标注方法,涵盖了106个关键点的具体位置及对应的人脸部位,如左眉左角、右眼左角等。同时,对比了dlib的68个关键点和98个关键点的标注方案,为面部识别和表情分析提供了重要的参考依据。

106关键点:

forked from 北京智云视图科技有限公司 / HyperLandmark 

68和106对应,从0开始编号:

17-19
21-28
22-24
26-74
36-94
39-59
42-27
45-20
31-31
35-93
48-45
54-50
57-32
8 -0*

 add_new_pic.object_pts = np.float64([
        (6.825897, 6.760612, 4.402142),  # 17 left brow left corner  brow:额头
        (1.330353, 7.122144, 6.903745),  # 21 left brow right corner
        (-1.330353, 7.122144, 6.903745),  # 22 right brow left corner
        (-6.825897, 6.760612, 4.402142),  # 26 right brow right corner
        (5.311432, 5.485328, 3.987654),  # 36 left eye left corner
        (1.789930, 5.393625, 4.413414),  # 39 left eye right corner
        (-1.789930, 5.393625, 4.413414),  # 42 right eye left corner
        (-5.311432, 5.485328, 3.987654),  # 45 right eye right corner
        (2.005628, 1.409845, 6.165652),  # 31 nose left corner
        (-2.005628, 1.409845, 6.165652),  # 35 nose right corner
        (2.774015, -2.080775, 5.048531),  # 48 mouth left corner
        (-2.774015, -2.080775, 5.048531),  # 54 mouth right corner
        (0.000000, -3.116408, 6.097667),  # 57 mouth central bottom corner
        (0.000000, -7.415691, 4.070434),  # 8 chin corner
    ])

原图:HyperLandmark/landmark_order.png at master · szad670401/HyperLandmark · GitHub

dlib68个关键点:

这个问题:从1开始编号

人脸关键点序号_insightface 特征点 名称_AI视觉网奇的博客-CSDN博客

98个关键点:

Look at Boundary: A Boundary-Aware Face Alignment Algorithm

### 实现关键点之间连线的操作 在 OpenCV 中,可以通过 `cv2.line()` 函数来连接两个指定的关键点。此函数允许定义线条的颜色、粗细以及其他属性[^1]。 对于人脸关键点检测后的可视化部分,在完成单个关键点的绘制之后,通过遍历预先设定好的关键点索引对列表,调用`cv2.line()`方法依次画出每一对关键点间的连线即可达到目的[^2]。 如果处理的是来自摄像头或者其他视频源的数据帧,则需要注意色彩空间转换的问题。因为通常情况下捕获到的画面是以 RGB 形式表示,而在 OpenCV 库内部默认采用 BGR 色彩模式,所以可能需要用 `cv2.cvtColor()` 来调整颜色顺序以确保显示正确[^3]。 下面是一个简单的 Python 代码片段用于展示如何使用 OpenCV 对两个人脸特征点间进行连结: ```python import cv2 import numpy as np def draw_lines(image, keypoints, connections): for connection in connections: pt1 = tuple(keypoints[connection[0]].astype(int)) pt2 = tuple(keypoints[connection[1]].astype(int)) image = cv2.line( img=image, pt1=pt1, pt2=pt2, color=(0, 255, 0), # Green line thickness=2 ) return image # 假设keypoints是从模型预测得到的人脸关键点坐标数组 connections = [(0, 1),(1, 2)] # 定义要相连的关键点序号组合 image_with_lines = draw_lines(image_copy, keypoints, connections) cv2.imshow('Image with Lines', image_with_lines) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值