交叉熵损失函数原理详解

本文详细解析了交叉熵损失函数的原理,包括其在多分类问题中的应用,函数性质,如凸性,以及与信息熵、相对熵(KL散度)的关系。通过实例比较了不同模型的预测效果,指出交叉熵能有效衡量概率分布的差异,常与softmax配合用于分类任务的损失计算。
摘要由CSDN通过智能技术生成

多分类中,只对目标正样本求loss,其余不管。

知乎的这篇文章讲的也挺好:

https://zhuanlan.zhihu.com/p/35709485

多分类:

(2) 多分类

多分类的情况实际上就是对二分类的扩展:

其中:

现在我们利用这个表达式计算上面例子中的损失函数值:

模型1

对所有样本的loss求平均:

模型2:

 ​​​​​​对所有样本的loss求平均:

可以发现,交叉熵损失函数可以捕捉到模型1模型2预测效果的差异。

2. 函数性质

可以看出,该函数是凸函数,求导时能够得到全局最优值。

之前在代码中经常看见交叉熵损失函数(CrossEntropy Loss),只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是模模糊糊,而且一般使用交叉熵作为损失函数时,在模型的输出层总会接一个softmax函数,至于为什么要怎么做也是不懂,所以专门花了一些时间打算从原理入手,搞懂它,故在此写一篇博客进行总结,以便以后翻阅。

信息量

信息奠基人香农(Shannon)认为“信息是用来消除随机不确定性的东西”,也就是说衡量信息量的大小就是看这个信息消除不确定性的程度。

“太阳从东边升起”,这条信息并没有减少不确定性,因为太阳肯定是从东边升起的,这是一句废话,信息量为0。

”2018年中国队成功进入世界杯“,从直觉上来看,这句话具有很大的信息量。因为中国队进入世界杯的不确定性因素很大,而这句话消除了进入世界杯的不确定性,所以按照定义,这句话的信息量很大。

根据上述可总结如下:信息量的大小与信息发生的概率成反比。概率越大,信息量越小。概率越小,信息量越大。

信息熵

信息熵也被称为熵,用来表示所有信息量的期望。

期望是试验中每次可能结果的概率乘以其结果的总和。

所以信息量的熵可表示为:(这里的XXX是一个离散型随机变量)

相对熵(KL散度)

交叉熵

交叉熵在单分类问题中的应用

总结:

  • 交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实概率分布与预测概率分布之间的差异。交叉熵的值越小,模型预测效果就越好。

  • 交叉熵在分类问题中常常与softmax是标配,softmax将输出的结果进行处理,使其多个分类的预测值和为1,再通过交叉熵来计算损失。

参考:

https://blog.csdn.net/tsyccnh/article/details/79163834

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值