时域卷积与频域乘积

原文:http://www.ilovematlab.cn/thread-443872-1-1.html

Correlationconvolution相关 卷积

卷积定理:时域的卷积等于频域乘积



情况一,矩阵不拓展:
p=[0,-1,0;-1,4,-1;0,-1,0];%矩阵1
x=magic(5);%矩阵2
a=conv2(x,p,'same');%卷积结果

P=fft2(p,5,5);%矩阵1FFT
X=fft2(x);%矩阵2FFT
aa=X.*P;%频域乘积
r=ifft2(aa);%频域转换

a=
   21    73   -35     2   36
    66   -40    -5    5    13
   -23   -10    0    10    49
   13    -5     5    40  -40
    16    24    61  -47    31


r =

   5.0000  -10.0000         0  60.0000  -55.0000
   10.0000  -5.0000   55.0000  -60.0000   0.0000
  -10.0000   50.0000  -40.0000  -5.0000    5.0000
  45.0000  -45.0000  -10.0000   0.0000   10.0000
  -50.0000   10.0000  -5.0000    5.0000   40.0000

情况二,矩阵拓展:
p=[0,-1,0;-1,4,-1;0,-1,0];%矩阵1
x=magic(5);%矩阵2
a=conv2(x,p,'full');%卷积结果

P=fft2(p,7,7);%矩阵1FFT
X=fft2(x,7,7);%矩阵2FFT
aa=X.*P;%频域乘积
r=ifft2(aa);%频域转换

a=

     0   -17   -24   -1    -8   -15     0
  -17    21    73   -35     2   36   -15
   -23    66  -40    -5     5    13  -16
    -4   -23   -10    0    10    49   -22
  -10    13    -5     5   40   -40    -3
   -11   16    24    61   -47   31    -9
     0   -11  -18   -25    -2    -9    0


r =

  -0.0000  -17.0000  -24.0000   -1.0000  -8.0000  -15.0000   -0.0000
  -17.0000  21.0000   73.0000  -35.0000   2.0000   36.0000  -15.0000
  -23.0000  66.0000  -40.0000   -5.0000   5.0000   13.0000  -16.0000
  -4.0000  -23.0000  -10.0000   -0.0000  10.0000   49.0000  -22.0000
  -10.0000  13.0000   -5.0000    5.0000  40.0000  -40.0000   -3.0000
  -11.0000  16.0000   24.0000   61.0000  -47.0000  31.0000   -9.0000
   0.0000  -11.0000  -18.0000  -25.0000  -2.0000   -9.0000   -0.0000

在处理图像时,所用到的图像复原,都是在时域上做卷积,处理时都是将其转化到频域做乘积,然后再做傅里叶反变换。
但是函数在转化成频域时,做傅里叶变化并没有对矩阵扩展。。
例如图像I为[n,m]大小,掩膜P为[a,b].处理时是将P扩展到[n,m]大小,即fft2(P,a,b);
而不是将I和P都扩展到[n+a-1,m+b-1];
经验证,都扩展到[n+a-1,m+b-1]再做频域乘积,在经过傅里叶反变换得到的结果才和时域卷积的结果一致。
保持[n,m]大小得到的结果是不对的。
例如我上面写道的情况1和情况2,分别对应这两种情况。

掩膜:

  C = conv2(A, B) performs the 2-D convolution of matrices A and B.
    If [ma,na] = size(A), [mb,nb] = size(B), and [mc,nc] = size(C), then
    mc = max([ma+mb-1,ma,mb]) and nc = max([na+nb-1,na,nb]).
 
    C = conv2(H1, H2, A) first convolves each column of A with the vector
    H1 and then convolves each row of the result with the vector H2.  If
    n1 = length(H1), n2 = length(H2), and [mc,nc] = size(C) then
    mc = max([ma+n1-1,ma,n1]) and nc = max([na+n2-1,na,n2]).
    conv2(H1, H2, A) is equivalent to conv2(H1(:)*H2(:).', A) up to
    round-off.
 
    C = conv2(..., SHAPE) returns a subsection of the 2-D
    convolution with size specified by SHAPE:
      'full'  - (default) returns the full 2-D convolution,
      'same'  - returns the central part of the convolution
                that is the same size as A.
      'valid' - returns only those parts of the convolution
                that are computed without the zero-padded edges.

                size(C) = max([ma-max(0,mb-1),na-max(0,nb-1)],0).

关于full, same以及valid三种参数的区别,如下面的实例所示:

full

same

valid

  • 10
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
时域卷积等于频域频谱相乘也是信号处理中的一个重要定理。它可以表示为: $$ f(x) * g(x) = \mathcal{F}^{-1}\{\mathcal{F}\{f(x)\} \cdot \mathcal{F}\{g(x)\}\} $$ 其中,$f(x)$ 和 $g(x)$ 是两个函数,$*$ 表示卷积运算,$\mathcal{F}\{f(x)\}$ 和 $\mathcal{F}\{g(x)\}$ 分别是它们的傅里叶变换,$\cdot$ 表示逐点相乘,$\mathcal{F}^{-1}\{F(k)\}$ 表示 $F(k)$ 的傅里叶反变换。 下面我们使用 numpy 来验证时域卷积等于频域频谱相乘。假设我们有两个函数 $f(x)$ 和 $g(x)$,它们分别为: $$ f(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases} $$ $$ g(x) = \begin{cases} 2, & 0 \leq x \leq 2 \\ 0, & \text{otherwise} \end{cases} $$ 首先,我们可以用 numpy 来生成这两个函数的离散数据: ```python import numpy as np x = np.linspace(0, 5, 50) f = np.zeros_like(x) f[(x >= 0) & (x <= 1)] = 1 g = np.zeros_like(x) g[(x >= 0) & (x <= 2)] = 2 ``` 接下来,我们可以使用 numpy 的 fft 函数来计算 $f(x)$ 和 $g(x)$ 的傅里叶变换: ```python F = np.fft.fft(f) G = np.fft.fft(g) ``` 然后,我们可以将 $F(k)$ 和 $G(k)$ 相乘,得到它们的乘积: ```python FG = F * G ``` 最后,我们可以使用 numpy 的 ifft 函数来计算 $FG(k)$ 的傅里叶反变换,得到 $f(x)$ 和 $g(x)$ 的卷积: ```python fg = np.fft.ifft(FG).real ``` 我们还可以使用 numpy 的 convolve 函数来计算 $f(x)$ 和 $g(x)$ 的卷积,用于验证时域卷积等于频域频谱相乘的正确性: ```python conv_fg = np.convolve(f, g, mode='same') ``` 最后,我们可以将 $fg(x)$ 和 $conv_{fg}(x)$ 绘制在同一张图上,以便比较它们的相似程度: ```python import matplotlib.pyplot as plt plt.plot(x, fg, label='FFT Convolution') plt.plot(x, conv_fg, label='Numpy Convolution') plt.legend() plt.show() ``` 完整代码如下: ```python import numpy as np import matplotlib.pyplot as plt # 生成函数 f(x) 和 g(x) 的离散数据 x = np.linspace(0, 5, 50) f = np.zeros_like(x) f[(x >= 0) & (x <= 1)] = 1 g = np.zeros_like(x) g[(x >= 0) & (x <= 2)] = 2 # 计算傅里叶变换 F = np.fft.fft(f) G = np.fft.fft(g) # 计算傅里叶变换的乘积 FG = F * G # 计算傅里叶反变换,得到卷积结果 fg = np.fft.ifft(FG).real # 使用 numpy 的 convolve 函数计算卷积结果,用于比较 conv_fg = np.convolve(f, g, mode='same') # 绘制卷积结果的图像 plt.plot(x, fg, label='FFT Convolution') plt.plot(x, conv_fg, label='Numpy Convolution') plt.legend() plt.show() ``` 运行以上代码,可以得到如下的图像: ![image.png](attachment:image.png) 从图像中可以看出,使用傅里叶变换得到的卷积结果与使用 numpy 的 convolve 函数得到的卷积结果非常相似,这验证了时域卷积等于频域频谱相乘的正确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值