通俗理解谱聚类算法

通俗理解谱聚类算法

谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法。

将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。

"带权无向图"这个词太学术了,我们换一种叫法,即:相似度矩阵。

假设我们有一个相似度矩阵,矩阵中存的是所有对象的两两相似度。

 

那么这个矩阵应该有如下性质:

  1. 矩阵为N * N,N为对象总数
  2. 矩阵对角线的值为0,自己和自己相似个毛啊
  3. 矩阵为对称矩阵,及相似度是无向的

我们将该矩阵记为:W。

 

谱聚类的任务就是根据这个相似度矩阵,将这一大堆对象,分成不同的小堆,小堆内部的对象彼此都很像,小堆之间则不像。

 

谱聚类本身也提供了好几种不同的分割(cut)方法,每种方法对应一种优化目标。

本文只介绍其中比较常见,也是比较实用,而且实现起来也比较经济的一种:Nomarlized cut.

 

说白了,就是你最应该掌握和使用的一种,好了,进入正题。

 

当你得到一个相似度矩阵W后,即可通过以下几个步骤,来得到对应的图分割方案:

1. 计算对角矩阵D[N*N]。,公式如下:  

 

 

 

 

   D矩阵为对角矩阵,对角线上的值为W矩阵中对应行或列的和。

 

2. 计算拉普拉斯矩阵(Laplacian) L:

3.  归一化L矩阵

4. 计算归一化后L矩阵的K个最小特征值及对应的特征向量

    将K个特征向量竖着并排放在一起,形成一个N*K的特征矩阵,记为Q。

 

5. 对特征矩阵Q做kmeans聚类,得到一个N维向量C。

    分别对应相似度矩阵W中每一行所代表的对象的所属类别,这也就是最终的聚类结果。

 

此外:

关于第3步中,对拉普拉斯矩阵归一化时,归一化公式进行变换得到:

 

 

            令:

 

 

则在第4步中,我们可以将求L的K个最小特征值及其对应的特征向量的问题,转化为求矩阵E的K个最大的特征值及其对应的特征向量。

        ---可以证明:L的K个最小特征值对应的特征向量,分别对应于E的K个最大的特征值对应的特征向量。

            且矩阵L的最小特征值为0,对应于矩阵E最大的特征值为1.矩阵L的第K小特征值等于1-矩阵E的第K大特征值

 

之所以要这么做,是因为在数值计算中,求矩阵的最大特征值,往往要比求最小特征值更方便和高效。

 

OK,至此,谱聚类就完成了,关于谱聚类的其他问题,诸如公式的推导,以及谱聚类的物理意义等,可参考博文:谱聚类算法

 

谱聚类的实现很简单,按照上述5个步骤按部就班即可,在matlab中只需寥寥数行:

 

Matlab代码   收藏代码
  1. function C = SpectralClustering(W, k)  
  2.     [n,m] = size(W)    
  3.     s = sum(W);  
  4.     D = full(sparse(1:n, 1:n, s));  
  5.     E = D^(-1/2)*W*D^(-1/2);  
  6.     [Q, V] = eigs(E, k);  
  7.     C = kmeans(Q, k);  
  8. end  

 

在整个实现过程中,比较麻烦的就是E矩阵特征值的求解。

在自己实现时,可以调用已有的线性代数的包来完成这一步。


本文转载于http://www.cnblogs.com/pinard/p/6221564.html

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理做一个总结。

1. 谱聚类概述

    谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,通过对所有数据点组成的图进行切图,让切图后不同的子图间边权重和尽可能的低,而子图内的边权重和尽可能的高,从而达到聚类的目的。

    乍一看,这个算法原理的确简单,但是要完全理解这个算法的话,需要对图论中的无向图,线性代数和矩阵分析都有一定的了解。下面我们就从这些需要的基础知识开始,一步步学习谱聚类。

2. 谱聚类基础之一:无向权重图

    由于谱聚类是基于图论的,因此我们首先温习下图的概念。对于一个图,我们一般用点的集合和边的集合来描述。即为。其中即为我们数据集里面所有的点。对于中的任意两个点,可以有边连接,也可以没有边连接。我们定义权重为点和点之间的权重。由于我们是无向图,所以。

    对于有边连接的两个点和,,对于没有边连接的两个点和,。对于图中的任意一个点,它的度定义为和它相连的所有边的权重之和,即

    利用每个点度的定义,我们可以得到一个nxn的度矩阵,它是一个对角矩阵,只有主对角线有值,对应第i行的第i个点的度数,定义如下:

    利用所有点之间的权重值,我们可以得到图的邻接矩阵,它也是一个nxn的矩阵,第i行的第j个值对应我们的权重。

    除此之外,对于点集的的一个子集,我们定义:

3. 谱聚类基础之二:相似矩阵

    在上一节我们讲到了邻接矩阵,它是由任意两点之间的权重值组成的矩阵。通常我们可以自己输入权重,但是在谱聚类中,我们只有数据点的定义,并没有直接给出这个邻接矩阵,那么怎么得到这个邻接矩阵呢?

    基本思想是,距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,不过这仅仅是定性,我们需要定量的权重值。一般来说,我们可以通过样本点距离度量的相似矩阵来获得邻接矩阵。

    构建邻接矩阵的方法有三类。-邻近法,K邻近法和全连接法。

    对于-邻近法,它设置了一个距离阈值,然后用欧式距离度量任意两点和的距离。即相似矩阵的,  然后根据和的大小关系,来定义邻接矩阵如下:

    从上式可见,两点间的权重要不就是,要不就是0,没有其他的信息了。距离远近度量很不精确,因此在实际应用中,我们很少使用-邻近法。

    第二种定义邻接矩阵的方法是K邻近法,利用KNN算法遍历所有的样本点,取每个样本最近的k个点作为近邻,只有和样本距离最近的k个点之间的。但是这种方法会造成重构之后的邻接矩阵W非对称,我们后面的算法需要对称邻接矩阵。为了解决这种问题,一般采取下面两种方法之一:

    第一种K邻近法是只要一个点在另一个点的K近邻中,则保留

    第二种K邻近法是必须两个点互为K近邻中,才能保留

    第三种定义邻接矩阵的方法是全连接法,相比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。最常用的是高斯核函数RBF,此时相似矩阵和邻接矩阵相同:

    在实际的应用中,使用第三种全连接法来建立邻接矩阵是最普遍的,而在全连接法中使用高斯径向核RBF是最普遍的。

4. 谱聚类基础之三:拉普拉斯矩阵

    单独把拉普拉斯矩阵(Graph Laplacians)拿出来介绍是因为后面的算法和这个矩阵的性质息息相关。它的定义很简单,拉普拉斯矩阵。即为我们第二节讲的度矩阵,它是一个对角矩阵。而即为我们第二节讲的邻接矩阵,它可以由我们第三节的方法构建出。

    拉普拉斯矩阵有一些很好的性质如下:

    1)拉普拉斯矩阵是对称矩阵,这可以由和都是对称矩阵而得。

    2)由于拉普拉斯矩阵是对称矩阵,则它的所有的特征值都是实数。

    3)对于任意的向量,我们有

      这个利用拉普拉斯矩阵的定义很容易得到如下:

    4) 拉普拉斯矩阵是半正定的,且对应的n个实数特征值都大于等于0,即, 且最小的特征值为0,这个由性质3很容易得出。

5. 谱聚类基础之四:无向图切图

    对于无向图的切图,我们的目标是将图切成相互没有连接的k个子图,每个子图点的集合为:,它们满足,且.

    对于任意两个子图点的集合, , 我们定义A和B之间的切图权重为:

    那么对于我们k个子图点的集合:,我们定义切图cut为:

     其中为的补集,意为除子集外其他V的子集的并集。

    那么如何切图可以让子图内的点权重和高,子图间的点权重和低呢?一个自然的想法就是最小化, 但是可以发现,这种极小化的切图存在问题,如下图:

    我们选择一个权重最小的边缘的点,比如C和H之间进行cut,这样可以最小化, 但是却不是最优的切图,如何避免这种切图,并且找到类似图中"Best Cut"这样的最优切图呢?我们下一节就来看看谱聚类使用的切图方法。

6. 谱聚类之切图聚类

    为了避免最小切图导致的切图效果不佳,我们需要对每个子图的规模做出限定,一般来说,有两种切图方式,第一种是RatioCut,第二种是Ncut。下面我们分别加以介绍。

6.1 RatioCut切图

    RatioCut切图为了避免第五节的最小切图,对每个切图,不光考虑最小化,它还同时考虑最大化每个子图点的个数,即:

    那么怎么最小化这个RatioCut函数呢?牛人们发现,RatioCut函数可以通过如下方式表示。

    我们引入指示向量,对于任意一个向量, 它是一个n维向量(n为样本数),我们定义为:

    那么我们对于,有:

    上述第(1)式用了上面第四节的拉普拉斯矩阵的性质3. 第二式用到了指示向量的定义。可以看出,对于某一个子图i,它的RatioCut对应于,那么我们的k个子图呢?对应的RatioCut函数表达式为:

    其中为矩阵的迹。也就是说,我们的RatioCut切图,实际上就是最小化我们的。注意到,则我们的切图优化目标为:

    注意到我们H矩阵里面的每一个指示向量都是n维的,向量中每个变量的取值为0或者,就有种取值,有k个子图的话就有k个指示向量,共有种H,因此找到满足上面优化目标的H是一个NP难的问题。那么是不是就没有办法了呢?

    注意观察中每一个优化子目标,其中是单位正交基, L为对称矩阵,此时的最大值为L的最大特征值,最小值是L的最小特征值。如果你对主成分分析PCA很熟悉的话,这里很好理解。在PCA中,我们的目标是找到协方差矩阵(对应此处的拉普拉斯矩阵L)的最大的特征值,而在我们的谱聚类中,我们的目标是找到目标的最小的特征值,得到对应的特征向量,此时对应二分切图效果最佳。也就是说,我们这里要用到维度规约的思想来近似去解决这个NP难的问题。

    对于,我们的目标是找到最小的L的特征值,而对于,则我们的目标就是找到k个最小的特征值,一般来说,k远远小于n,也就是说,此时我们进行了维度规约,将维度从n降到了k,从而近似可以解决这个NP难的问题。

    通过找到L的最小的k个特征值,可以得到对应的k个特征向量,这k个特征向量组成一个nxk维度的矩阵,即为我们的H。一般需要对H里的每一个特征向量做标准化,即.

    由于我们在使用维度规约的时候损失了少量信息,导致得到的优化后的指示向量h对应的H现在不能完全指示各样本的归属,因此一般在得到nxk维度的矩阵H后还需要对每一行进行一次传统的聚类,比如使用K-Means聚类.

6.2 Ncut切图

    Ncut切图和RatioCut切图很类似,但是把Ratiocut的分母换成. 由于子图样本的个数多并不一定权重就大,我们切图时基于权重也更合我们的目标,因此一般来说Ncut切图优于RatioCut切图。

    ,对应的,Ncut切图对指示向量做了改进。注意到RatioCut切图的指示向量使用的是标示样本归属,而Ncut切图使用了子图权重来标示指示向量h,定义如下:

    那么我们对于,有:

    推导方式和RatioCut完全一致。也就是说,我们的优化目标仍然是

    但是此时我们的,而是。推导如下:

    也就是说,此时我们的优化目标最终为:

    此时我们的H中的指示向量并不是标准正交基,所以在RatioCut里面的降维思想不能直接用。怎么办呢?其实只需要将指示向量矩阵H做一个小小的转化即可。

    我们令, 则:,,也就是说优化目标变成了:

    可以发现这个式子和RatioCut基本一致,只是中间的L变成了。这样我们就可以继续按照RatioCut的思想,求出的最小的前k个特征值,然后求出对应的特征向量,并标准化,得到最后的特征矩阵,最后对进行一次传统的聚类(比如K-Means)即可。

    一般来说, 相当于对拉普拉斯矩阵做了一次标准化,即

7. 谱聚类算法流程

    铺垫了这么久,终于可以总结下谱聚类的基本流程了。一般来说,谱聚类主要的注意点为相似矩阵的生成方式(参见第二节),切图的方式(参见第六节)以及最后的聚类方法(参见第六节)。

    最常用的相似矩阵的生成方式是基于高斯核距离的全连接方式,最常用的切图方式是Ncut。而到最后常用的聚类方法为K-Means。下面以Ncut总结谱聚类算法流程。

    输入:样本集D=,相似矩阵的生成方式, 降维后的维度, 聚类方法,聚类后的维度

    输出: 簇划分. 

    1) 根据输入的相似矩阵的生成方式构建样本的相似矩阵S

    2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D

    3)计算出拉普拉斯矩阵L

    4)构建标准化后的拉普拉斯矩阵

    5)计算最小的个特征值所各自对应的特征向量

    6) 将特征向量标准化,最终组成维的特征矩阵F

    7)对F中的每一行作为一个维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为。

    8)得到簇划分.         

8. 谱聚类算法总结

    谱聚类算法是一个使用起来简单,但是讲清楚却不是那么容易的算法,它需要你有一定的数学基础。如果你掌握了谱聚类,相信你会对矩阵分析,图论有更深入的理解。同时对降维里的主成分分析也会加深理解。

    下面总结下谱聚类算法的优缺点。

    谱聚类算法的主要优点有:

    1)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到

    2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。

    谱聚类算法的主要缺点有:

    1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。

    2) 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。


K-Means 聚类算法可以用于实现片的前景和背景分割。在这个问题,将片视为数据集的样本,每个像素点作为一个样本点。K-Means 算法通过将样本点分配到离它们最近的聚类心来进行聚类。对于片前景后景分割的任务,可以使用两个聚类心,一个表示前景,一个表示背景。根据像素点的特征(如颜色、纹理等),将它们分配到离它们最近的聚类心,从而实现前景和背景的分割。 具体实现时,可以使用以下步骤: 1. 将片转换为数据集,每个像素点作为一个样本点。 2. 初始化两个聚类心,一个代表前景,一个代表背景。 3. 重复以下步骤,直到满足停止条件: a. 计算每个样本点与聚类心之间的距离。 b. 将每个样本点分配到距离最近的聚类心。 c. 更新聚类心为分配给它们的样本点的平均值。 4. 最终,得到的聚类心就表示了前景和背景。 通过这样的步骤,K-Means 聚类算法可以将的前景和背景进行有效的分割。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [全网最通俗易懂的聚类算法!嘿,来聚个类!](https://blog.csdn.net/c406495762/article/details/116138720)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值