本地部署Ollama+OpenWebUI+Deepseek-R1操作指南

零门槛上手!本地部署Ollama+OpenWebUI+DeepseekR1操作指南

Ollama 和 Open WebUI 是两款非常实用的工具,可以帮助用户在本地轻松部署强大的语言模型和智能推理引擎。本篇文章将详细介绍如何零门槛地在本地部署 Ollama 和 Open WebUI,并通过 Deepseek-R1-14b 模型进行高效的推理。

Ollama 安装 Deepseek-R1-14b

Ollama 是一款非常轻量且易于安装的工具,旨在为开发者提供便捷的语言模型 API 支持。它支持多种大型语言模型的运行和调用,包括 Deepseek-R1-14b。下面是安装步骤的详细说明。

curl -fsSL https://ollama.com/install.sh
ollama run deepseek-r1:14b

在执行这条命令时,Ollama 将自动下载并安装 deepseek-r1:14b 这个大型语言模型,并准备好 API 供后续使用。安装成功后,你将能够通过 API 请求与模型进行交互。

Ollama 安装不在这里做过多介绍,比较方便,几乎一键安装部署。

Open WebUI 部署

Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 AI 平台,旨在完全离线运行。它支持各种 LLM 运行器,如 Ollama 和 OpenAI 兼容的 API,并内置了 RAG 推理引擎,使其成为强大的 AI 部署解决方案。

Docker 安装

如果你希望通过 Docker 来快速部署 Open WebUI,可以按照以下步骤进行操作。首先,确保你已经在系统中安装了 Docker。然后,执行以下命令来启动 Open W

### OpenWebUIOllama 的配置 为了在OpenWebUI中成功配置或集成Ollama,需遵循特定步骤来确保两者能够协同工作。首先,在Ubuntu环境中部署OpenWebUIOllama前,应依据官方NVIDIA文档完成NVIDIA Container Runtime for Docker的安装或更新过程[^2]。 对于具体的集成操作,虽然直接针对OpenWebUIOllama之间的连接指南较少提及,但从已有的实践来看,通常涉及以下几个方面: #### 1. 环境准备 确保Docker环境已经正确设置了支持GPU加速的功能,这对于运行依赖于CUDA的应用程序至关重要。这一步骤可以通过确认`nvidia-smi`命令返回的信息正常显示当前系统的显卡状态来进行验证。 #### 2. 配置文件调整 编辑OpenWebUI的相关配置文件(通常是`.env`或者其他形式的设置文件),加入指向本地或远程Ollama服务的具体参数。这些参数可能包括但不限于API密钥、服务器地址等必要信息。此部分具体实现方式取决于所使用的版本以及开发者个人偏好。 #### 3. 使用Docker Compose简化管理 考虑到同时管理和维护多个容器可能会带来不便,推荐采用Docker Compose工具来定义并启动多容器应用。通过编写YAML格式的服务描述文件,可以更加方便地指定各个组件间的交互逻辑和服务端口映射关系。 ```yaml version: '3' services: webui: image: ghcr.io/open-webui/open-webui:main ports: - "3000:8080" volumes: - open-webui:/app/backend/data environment: - OLLAMA_API_KEY=your_api_key_here - OLLAMA_SERVER_URL=http://ollama_service_address restart: always ollama: # 假设这是用于表示Ollama服务的一个占位符 image: your_ollama_image_name ... volumes: open-webui: ``` 上述示例展示了如何利用docker-compose.yml文件将OpenWebUI与假设存在的Ollama服务关联起来。请注意替换其中的变量值以匹配实际场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呱牛 do IT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值