【模板题】Luogu-P4717 快速莫比乌斯/沃尔什变换 (FMT/FWT)

73 篇文章 0 订阅

题目

https://www.luogu.com.cn/problem/P4717
就是给两个序列,分别求它们的 或、与、异或 卷积
学习自这里 https://www.luogu.com.cn/blog/xht37/solution-p4717

分析

FWT 分治
总体时间复杂度 O(n lgn)
具体见博客里的FWT笔记

代码

#include <bits/stdc++.h>
using namespace std;

const long long Ha=998244353;
const int MAXN=1<<18;
int n,m;
long long a[MAXN],b[MAXN];
long long A[MAXN],B[MAXN];


//要求 n 是 2 的次幂

//x=1: FWT   x=-1: IFWT
void OR(long long *f, const long long x)
{
    for (int o=2,k=1; o<=n; o<<=1,k<<=1)
        for (int i=0; i<n; i+=o)
            for (int j=0; j<k; j++) {
                f[i+j+k]+=f[i+j]*x;
                f[i+j+k]%=Ha;
            }
}


//x=1: FWT   x=-1: IFWT
void AND(long long *f, const long long x)
{
    for (int o=2,k=1; o<=n; o<<=1,k<<=1)
        for (int i=0; i<n; i+=o)
            for (int j=0; j<k; j++) {
                f[i+j]+=f[i+j+k]*x;
                f[i+j]%=Ha;
            }
}


//x=1: FWT   x=1/2: IFWT
void XOR(long long *f, const long long x)
{
    for (int o=2,k=1; o<=n; o<<=1,k<<=1)
        for (int i=0; i<n; i+=o)
            for (int j=0; j<k; j++) {
                f[i+j]= (f[i+j]+f[i+j+k]) %Ha;
                f[i+j+k]= (f[i+j]-f[i+j+k]-f[i+j+k]) %Ha;
                f[i+j]= (f[i+j]*x) %Ha;
                f[i+j+k]= (f[i+j+k]*x) %Ha;
            }
}





int main()
{
    scanf("%d",&m);
    n=1<<m;
    for (int i=0; i<n; i++) scanf("%lld",&a[i]);
    for (int i=0; i<n; i++) scanf("%lld",&b[i]);

    //OR
    for (int i=0; i<n; i++) A[i]=a[i],B[i]=b[i];
    OR(A,1), OR(B,1);   //FWT
    for (int i=0; i<n; i++) A[i]=(A[i]*B[i])%Ha;
    OR(A,Ha-1);         //IFWT
    for (int i=0; i<n; i++) printf("%lld ",(A[i]%Ha+Ha)%Ha);
    puts("");

    //AND
    for (int i=0; i<n; i++) A[i]=a[i],B[i]=b[i];
    AND(A,1), AND(B,1);
    for (int i=0; i<n; i++) A[i]=(A[i]*B[i])%Ha;
    AND(A,Ha-1);
    for (int i=0; i<n; i++) printf("%lld ",(A[i]%Ha+Ha)%Ha);
    puts("");

    //XOR
    for (int i=0; i<n; i++) A[i]=a[i],B[i]=b[i];
    XOR(A,1), XOR(B,1);
    for (int i=0; i<n; i++) A[i]=(A[i]*B[i])%Ha;
    XOR(A,(Ha+1)>>1);
    for (int i=0; i<n; i++) printf("%lld ",(A[i]%Ha+Ha)%Ha);
    puts("");

    return 0;
}


/*

2
2 4 6 8
1 3 5 7

*/
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道经典的组合数学目,需要用到组合数的性质。 我们可以先考虑 $n=5$ 的情况。这时,一共有 $2^n=32$ 种可能的抛硬币的结果,其中正面朝上的硬币数为 $0,1,2,3,4,5$ 的情况分别有 $1,5,10,10,5,1$ 种。 接下来,我们考虑 $n$ 的任意情况。可以证明,当 $n$ 为偶数时,正面朝上的硬币数的种数与 $n=5$ 时是相同的;当 $n$ 为奇数时,正面朝上的硬币数的种数比 $n=5$ 时多一种。这是因为当抛硬币的次数为偶数时,正反面的数量是相等的,因此正面朝上的硬币数的种数与 $n=5$ 时相同;当抛硬币的次数为奇数时,正反面的数量不相等,因此正面朝上的硬币数的种数比 $n=5$ 时多一种。 因此,需要分别处理 $n$ 为奇数和偶数的情况。当 $n$ 为偶数时,正面朝上的硬币数的种数与 $n=5$ 时相同,因此答案为: $$ \sum_{i=0}^{n/2} \binom{n}{i} $$ 当 $n$ 为奇数时,正面朝上的硬币数的种数比 $n=5$ 时多一种,因此答案为: $$ \sum_{i=0}^{n/2} \binom{n}{i} + \sum_{i=0}^{n/2} \binom{n}{i+1} $$ 需要注意的是,当 $n$ 为 $0$ 时,只有一种可能的结果,即所有硬币都是反面朝上,因此答案为 $1$。 以下是一份参考代码,可以用于计算答案: ```c++ #include <iostream> #include <cmath> using namespace std; int main() { int n; cin >> n; if (n == 0) { cout << "1" << endl; } else { int ans = pow(2, n); if (n % 2 == 0) { for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i) * (1 << i) / (i + 1); } } else { for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i) * (1 << i) / (i + 1); } for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i - 1) * (1 << i) / (i + 1); } } cout << ans << endl; } return 0; } ``` 代码中使用了数学公式计算答案,其中 $\binom{n}{i}$ 使用了移项后再计算的方式,避免了复杂的组合数计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值