GalaxyOJ-804 (字典树)

题目

Problem Description

ZYB喜欢研究Xor,现在他得到了一个长度为n的数组A。于是他想知道:对于所有数对(i,j)(i∈[1,n],j∈[1,n]),lowbit(Ai xor Aj)之和为多少.由于答案可能过大,你需要输出答案对998244353取模后的值 定义lowbit(x)=2^k,其中k是最小的满足(x and 2^k)>0的数
特别地:lowbit(0)=0

Input

第一行一个正整数n,表示数组长度
第二行n个非负整数,第i个整数为Ai
n∈[1,5∗10^4],Ai∈[0,2^29]

Output

输出一个整数ans。

Sample Input

5
4 0 2 7 0

Sample Output

36

分析

  • 题意就是问一堆数中两两异或值的 lowbit 和。
  • 根为最低位,建一棵字典树,然后对于每个节点,在它两个分支中各取一个(存在的)数,它们的异或值肯定是当前节点的下一位(因为前面都一样),利用这个求出所有节点对答案的贡献即可。

程序

#include <cstdio>
#define Ha 998244353
#define L(x) (l[x]?l[x]:(l[x]=++N))
#define R(x) (r[x]?r[x]:(r[x]=++N))
long long n,k,A,i,j,N=1,ans,l[1500000],r[1500000],v[1500000];

void dfs(int x,long long o){
    ans=(ans+v[l[x]]*v[r[x]]*o)%Ha;
    if (l[x]) dfs(l[x],o<<1);
    if (r[x]) dfs(r[x],o<<1);
}

int main(){
    scanf("%lld",&n);
    for (i=1; i<=n; i++){
        scanf("%lld",&A);
        for (v[k=1]++,j=0; j<=29; j++){
            if (A&(1<<j)) v[k=R(k)]++;
            else v[k=L(k)]++;
        }
    }
    dfs(1,1);
    printf("%lld",(ans*2)%Ha);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值