题目
Problem Description
ZYB喜欢研究Xor,现在他得到了一个长度为n的数组A。于是他想知道:对于所有数对(i,j)(i∈[1,n],j∈[1,n]),lowbit(Ai xor Aj)之和为多少.由于答案可能过大,你需要输出答案对998244353取模后的值 定义lowbit(x)=2^k,其中k是最小的满足(x and 2^k)>0的数
特别地:lowbit(0)=0Input
第一行一个正整数n,表示数组长度
第二行n个非负整数,第i个整数为Ai
n∈[1,5∗10^4],Ai∈[0,2^29]Output
输出一个整数ans。
Sample Input
5
4 0 2 7 0Sample Output
36
分析
- 题意就是问一堆数中两两异或值的 lowbit 和。
- 根为最低位,建一棵字典树,然后对于每个节点,在它两个分支中各取一个(存在的)数,它们的异或值肯定是当前节点的下一位(因为前面都一样),利用这个求出所有节点对答案的贡献即可。
程序
#include <cstdio>
#define Ha 998244353
#define L(x) (l[x]?l[x]:(l[x]=++N))
#define R(x) (r[x]?r[x]:(r[x]=++N))
long long n,k,A,i,j,N=1,ans,l[1500000],r[1500000],v[1500000];
void dfs(int x,long long o){
ans=(ans+v[l[x]]*v[r[x]]*o)%Ha;
if (l[x]) dfs(l[x],o<<1);
if (r[x]) dfs(r[x],o<<1);
}
int main(){
scanf("%lld",&n);
for (i=1; i<=n; i++){
scanf("%lld",&A);
for (v[k=1]++,j=0; j<=29; j++){
if (A&(1<<j)) v[k=R(k)]++;
else v[k=L(k)]++;
}
}
dfs(1,1);
printf("%lld",(ans*2)%Ha);
}