题目
有 n 个点的完全图,对边染色,共 m 种颜色。问是否一定出现同色三角形。
m<=10^6
,n<=2^63-1
,多组数据
in | out |
---|---|
5 2 6 2 | NO YES |
分析
- 有一个经典的同色三角形问题,是这题简化版:6个点2种颜色,必有同色三角形。
百度上的证明是这样的
- 优质解答
从任意一点,例如点A出发,向B,C,D,E,F连5条线段,因为只有两种颜色,所以根据抽屉原理,至少有3条线段同色.不妨设AB,AD,AE三线同红色.如果B,D,E这三点之间所连的三条线段中有一条是红色的,则出现一个三边为红色的三角形.如果这三点之间所连线段都不是红色,那么就都是黄色的,这样,△BDE就是一个黄色的三角形.因此,不管如何连线,总可以找到一个三边同色的三角形.
问题得证.
- 优质解答
类比一下,在 n 个点中选任意一点,那么根据抽屉原理,至少有
((n-1)/m)+((n-1)%m!=0)
(这里将这个数暂且设成 k) 条接出的线段同色(也就是 (n-1)/m 上取整),设颜色是 m1 ,然后对于这 k 条边对应的点的点(不算原来选的那个),它们之间的边就不能再有m1,于是就变成了个 “(k个点,(m-1)种颜色)”的子问题了。- 一直这么弄下去,直到
m=1
,此时在判断剩下几个点,小于三个就不一定,否则一定有同色三角形。
程序
#include <cstdio>
int main(){
for(long long n,m; scanf("%lld%lld",&n,&m)!=EOF; ){
for (; m>1; m--)
n=((n-1)/m)+((n-1)%m!=0);
printf(n>=3?"YES\n":"Not Sure\n");
}
}