同色三角形 (数学题)

题目

有 n 个点的完全图,对边染色,共 m 种颜色。问是否一定出现同色三角形。
m<=10^6,n<=2^63-1,多组数据

inout
5 2
6 2
NO
YES

分析

  • 有一个经典的同色三角形问题,是这题简化版:6个点2种颜色,必有同色三角形。
  • 百度上的证明是这样的

    • 优质解答
      从任意一点,例如点A出发,向B,C,D,E,F连5条线段,因为只有两种颜色,所以根据抽屉原理,至少有3条线段同色.不妨设AB,AD,AE三线同红色.如果B,D,E这三点之间所连的三条线段中有一条是红色的,则出现一个三边为红色的三角形.如果这三点之间所连线段都不是红色,那么就都是黄色的,这样,△BDE就是一个黄色的三角形.因此,不管如何连线,总可以找到一个三边同色的三角形.
      问题得证.
  • 类比一下,在 n 个点中选任意一点,那么根据抽屉原理,至少有 ((n-1)/m)+((n-1)%m!=0)(这里将这个数暂且设成 k) 条接出的线段同色(也就是 (n-1)/m 上取整),设颜色是 m1 ,然后对于这 k 条边对应的点的点(不算原来选的那个),它们之间的边就不能再有m1,于是就变成了个 “(k个点,(m-1)种颜色)”的子问题了。

  • 一直这么弄下去,直到 m=1 ,此时在判断剩下几个点,小于三个就不一定,否则一定有同色三角形。

程序

#include <cstdio>

int main(){
    for(long long n,m; scanf("%lld%lld",&n,&m)!=EOF; ){
        for (; m>1; m--)
            n=((n-1)/m)+((n-1)%m!=0);
        printf(n>=3?"YES\n":"Not Sure\n");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值