当我们通过路由规则处理以后还是获取到了多个Invoker,但是每次发次调用必然只是调用某一个有效的Invoker,那这个负载均衡的功能就是LoadBalance去实现的,我们依然先来看一下这个几口的实现类和方法。
Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation)
public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
if (invokers == null || invokers.isEmpty())
return null;
if (invokers.size() == 1)
return invokers.get(0);
return doSelect(invokers, url, invocation);
}
在获取的时候我们其实调用的是loadbalance的doSelect方法
那这里我们可以看到有4中负载方案,我们来一个个讲解
1.RandomLoadBalance(随机):这里的随机跟我们了解的可能有些不同,这里是按照权重来随机的
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
//获取当前invoker数量
int length = invokers.size(); // Number of invokers
int totalWeight = 0; // The sum of weights
boolean sameWeight = true; // Every invoker has the same weight?
//循环所有invoker
for (int i = 0; i < length; i++) {
//获取当前invoker的权重
int weight = getWeight(invokers.get(i), invocation);
//计算总权重
totalWeight += weight; // Sum
//这里判断 到目前为止是不是所有的invoker权重都是一致的
if (sameWeight && i > 0
&& weight != getWeight(invokers.get(i - 1), invocation)) {
sameWeight = false;
}
}
//有权重,但是权重不一致时
if (totalWeight > 0 && !sameWeight) {
// 在所有权重总和值中 获取一个随机数
int offset = random.nextInt(totalWeight);
// 循环所有的invoker 那随机数-当前invoker的权重,直到获取到的值<0
//根据下标获取相应的Invoker
for (int i = 0; i < length; i++) {
offset -= getWeight(invokers.get(i), invocation);
if (offset < 0) {
return invokers.get(i);
}
}
}
// 如果所有的权重都是一致的 按照随机来获取invoker
return invokers.get(random.nextInt(length));
}
2.RoundRobinLoadBalance(轮询):这里的随机跟我们了解的可能有些不同,这里是按照权重来轮询的
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
//获取所有参与的invoker个数
int length = invokers.size(); // Number of invokers
int maxWeight = 0; // The maximum weight
int minWeight = Integer.MAX_VALUE; // The minimum weight
//初始化invoker和权重的对应关系MAP
final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
int weightSum = 0;
//循环所有的invoker
for (int i = 0; i < length; i++) {
//获取当前invoker的权重
int weight = getWeight(invokers.get(i), invocation);
//比较当前权重跟最大权重 获取最大权重值
maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight
//比较当前权重跟最小权重 获取最小权重值
minWeight = Math.min(minWeight, weight); // Choose the minimum weight
//如果当前invoker权重值>0 设置invoker和权重关系,并且把值加到总权重中
if (weight > 0) {
invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
weightSum += weight;
}
}
//这里获取当前方法的调用次数
AtomicPositiveInteger sequence = sequences.get(key);
if (sequence == null) {
//为空 初始化次数0 并返回次数
sequences.putIfAbsent(key, new AtomicPositiveInteger());
sequence = sequences.get(key);
}
//获取已经调用的次数,并且+1
int currentSequence = sequence.getAndIncrement();
//如果最大权重>0 并且 最小权重<最大权重 说明权重不一致
if (maxWeight > 0 && minWeight < maxWeight) {
//这里根据当前调用次数和权重总和进行取模
int mod = currentSequence % weightSum;
//根据最大权重进行循环
for (int i = 0; i < maxWeight; i++) {
//循环invoker和权重的对应关系MAP
for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
final Invoker<T> k = each.getKey();
final IntegerWrapper v = each.getValue();
//如果取模的结果 ==0 并且当前invoker的权重>0 返回当前invoker
if (mod == 0 && v.getValue() > 0) {
return k;
}
//如果取模不为0 并且当前invoker的权重>0
//当前invoker权重-1 并且取模值-1
if (v.getValue() > 0) {
v.decrement();
mod--;
}
}
}
}
// 这里直接根据调用次数跟invoker个数进行取模获取invoker
return invokers.get(currentSequence % length);
}
3.LeastActiveLoadBalance(最少活跃数):最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
//获取参与计算的invoker数量
int length = invokers.size(); // Number of invokers
int leastActive = -1; // The least active value of all invokers
int leastCount = 0; // The number of invokers having the same least active value (leastActive)
//初始化一个invoker数量的数组 用于存储最小活跃数的invoker下标
int[] leastIndexs = new int[length]; // The index of invokers having the same least active value (leastActive)
int totalWeight = 0; // The sum of weights
int firstWeight = 0; // Initial value, used for comparision
boolean sameWeight = true; // Every invoker has the same weight value?
//循环所有的invoker
for (int i = 0; i < length; i++) {
Invoker<T> invoker = invokers.get(i);
//获取当前invoker的活跃数,也就是调用量
int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // Active number
//获取当前invoker的权重
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // Weight
//如果当前最小活跃数为-1 或者 当前invoker的活跃数<最小活跃数
//设置当前invoker的活跃数为最小活跃数
//同时把当前invoker下标放到leastIndexs数组中
if (leastActive == -1 || active < leastActive) { // Restart, when find a invoker having smaller least active value.
leastActive = active; // Record the current least active value
leastCount = 1; // Reset leastCount, count again based on current leastCount
leastIndexs[0] = i; // Reset
totalWeight = weight; // Reset
firstWeight = weight; // Record the weight the first invoker
sameWeight = true; // Reset, every invoker has the same weight value?
} else if (active == leastActive) {
//如果当前invoker的活跃数 == 最小活跃数
//把当前invoker的下标添加到leastIndexs数组中
//并且把最小数量+1
leastIndexs[leastCount++] = i; // Record index number of this invoker
totalWeight += weight; // Add this invoker's weight to totalWeight.
// If every invoker has the same weight?
if (sameWeight && i > 0
&& weight != firstWeight) {
sameWeight = false;
}
}
}
//当只有一个最小数据时 直接返回当前下标的invoker
if (leastCount == 1) {
// If we got exactly one invoker having the least active value, return this invoker directly.
return invokers.get(leastIndexs[0]);
}
if (!sameWeight && totalWeight > 0) {
//如果权重不一致,总权重>0
//随机获取总权重(这里是所有最小invoker的权重和)的一个数值
int offsetWeight = random.nextInt(totalWeight);
//循环最小invokers
for (int i = 0; i < leastCount; i++) {
int leastIndex = leastIndexs[i];
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
//根据权重去计算 知道剩余权重<=0 返回当前下标的invoker
if (offsetWeight <= 0)
return invokers.get(leastIndex);
}
}
//如果所有invoker的权重都一样,随机获取一个最小invoker返回
return invokers.get(leastIndexs[random.nextInt(leastCount)]);
}
这里可以看到我们获取活跃数的地方是根据RpcStatus获取的,这个配置规则其实是在dubbo:reference
的actives
属性,这里设置的是最大活跃数,如果没有配置的话,默认调用一次+1,调用结束-1,那每次调用的增减是在哪里执行的呢?
其实是在com.alibaba.dubbo.rpc.filter.ActiveLimitFilter中
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
URL url = invoker.getUrl();
String methodName = invocation.getMethodName();
int max = invoker.getUrl().getMethodParameter(methodName, Constants.ACTIVES_KEY, 0);
RpcStatus count = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName());
if (max > 0) {
long timeout = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.TIMEOUT_KEY, 0);
long start = System.currentTimeMillis();
long remain = timeout;
int active = count.getActive();
if (active >= max) {
synchronized (count) {
while ((active = count.getActive()) >= max) {
try {
count.wait(remain);
} catch (InterruptedException e) {
}
long elapsed = System.currentTimeMillis() - start;
remain = timeout - elapsed;
if (remain <= 0) {
throw new RpcException("Waiting concurrent invoke timeout in client-side for service: "
+ invoker.getInterface().getName() + ", method: "
+ invocation.getMethodName() + ", elapsed: " + elapsed
+ ", timeout: " + timeout + ". concurrent invokes: " + active
+ ". max concurrent invoke limit: " + max);
}
}
}
}
}
try {
long begin = System.currentTimeMillis();
RpcStatus.beginCount(url, methodName);
try {
Result result = invoker.invoke(invocation);
RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, true);
return result;
} catch (RuntimeException t) {
RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, false);
throw t;
}
} finally {
if (max > 0) {
synchronized (count) {
count.notify();
}
}
}
}
真正加减是在RpcStatus.beginCount(url, methodName);和RpcStatus.endCount方法
public static void beginCount(URL url, String methodName) {
beginCount(getStatus(url));
beginCount(getStatus(url, methodName));
}
private static void beginCount(RpcStatus status) {
status.active.incrementAndGet();
}
/**
* @param url
* @param elapsed
* @param succeeded
*/
public static void endCount(URL url, String methodName, long elapsed, boolean succeeded) {
endCount(getStatus(url), elapsed, succeeded);
endCount(getStatus(url, methodName), elapsed, succeeded);
}
private static void endCount(RpcStatus status, long elapsed, boolean succeeded) {
status.active.decrementAndGet();
status.total.incrementAndGet();
status.totalElapsed.addAndGet(elapsed);
if (status.maxElapsed.get() < elapsed) {
status.maxElapsed.set(elapsed);
}
if (succeeded) {
if (status.succeededMaxElapsed.get() < elapsed) {
status.succeededMaxElapsed.set(elapsed);
}
} else {
status.failed.incrementAndGet();
status.failedElapsed.addAndGet(elapsed);
if (status.failedMaxElapsed.get() < elapsed) {
status.failedMaxElapsed.set(elapsed);
}
}
}
4.ConsistentHashLoadBalance(一致性hash),将整个哈希值空间组织成一个虚拟的圆环,圆环由2^32-1个节点组成,我们通过将被选取的东西的值跟2^32-1进行取模运算,获取被选中的节点在圆上的位置,当有一个需要计算的数据到来时,依然是跟2^32-1进行取模运算,然后得到一个圆上的值,顺时针转动,第一个服务器节点就是我们需要得到的值。
1.一致性 Hash,相同参数的请求总是发到同一提供者
2.当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动
3.缺省只对第一个参数 Hash,160 份虚拟节点,可配置(由于被选择的节点太少,这个算法可能导致分配不均匀,这个时候虚拟节点就诞生了,把真实节点通过某个算法生成N个虚拟节点,然后拿真实节点和虚拟节点进行圆环上的匹配)
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
① int identityHashCode = System.identityHashCode(invokers);
② ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
if (selector == null || selector.identityHashCode != identityHashCode) {
selectors.put(key, ③ new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode));
selector = (ConsistentHashSelector<T>) selectors.get(key);
}
return ④ selector.select(invocation);
}
1.根据传入的所有invokers,生成一个hashcode
2.根据当前类+方法名称,获取对应的ConsistentHashSelector
3.如果没有获取到,实例化一个ConsistentHashSelector
ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
this.identityHashCode = identityHashCode;
URL url = invokers.get(0).getUrl();
① this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
② String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
argumentIndex = new int[index.length];
for (int i = 0; i < index.length; i++) {
argumentIndex[i] = Integer.parseInt(index[i]);
}
for (Invoker<T> invoker : invokers) {
③ String address = invoker.getUrl().getAddress();
for (int i = 0; i < replicaNumber / 4; i++) {
byte[] digest = md5(address + i);
for (int h = 0; h < 4; h++) {
long m = hash(digest, h);
virtualInvokers.put(m, invoker);
}
}
}
}
3.1获取到配置的虚拟节点个数,如果没有,默认160
3.2获取所有参与HASH的字段下标信息,进行初始化
3.3循环每个Invoker,拿到地址信息,进行md5计算,然后进行hash,生成虚拟节点和Invoker的对应关系
4.根据请求的信息,获取对应的Invoker
public Invoker<T> select(Invocation invocation) {
String key = toKey(invocation.getArguments());
byte[] digest = md5(key);
return selectForKey(hash(digest, 0));
}
private String toKey(Object[] args) {
StringBuilder buf = new StringBuilder();
for (int i : argumentIndex) {
if (i >= 0 && i < args.length) {
buf.append(args[i]);
}
}
return buf.toString();
}
private Invoker<T> selectForKey(long hash) {
Map.Entry<Long, Invoker<T>> entry = virtualInvokers.tailMap(hash, true).firstEntry();
if (entry == null) {
entry = virtualInvokers.firstEntry();
}
return entry.getValue();
}