AIOps实现的简单途径

5 篇文章 0 订阅
4 篇文章 0 订阅

AIOps需要大模型的支持,但是训练一个业务专用的大模型并不是一件理想的任务,所以利用开源的通用大模型才是王道。

在这里插入图片描述

我们可以利用AI大模型的理解能力来帮助分析和解释Kubernetes(K8s)的日志。通过提供日志中可能存在问题的部分,AI模型可以帮助我们识别出异常情况、错误代码或其他潜在的故障原因。

这个过程通常包括以下步骤:

  1. 提取日志:从K8s中提取出需要分析的日志。
  2. 筛选日志:根据需求,筛选出可能存在问题的日志部分,这里会涉及到相关的运维经验,需要推断哪些日志是可能有潜在故障的。
  3. 输入到AI模型:将筛选出的日志部分输入到AI模型中进行分析。
  4. 解释结果:AI模型会根据其学习到的知识和模式来识别和解释日志中的问题。
  5. 对结果自动分类:每一类故障都应该对应一套完整的故障恢复/解决/报警方案。
  6. 处理故障:对未知故障报警,人工干预;有对应方案的故障直接自动恢复。

虽然AI模型可以提供有价值的见解和帮助,但它们并不是完美的。因此,最终的故障排除和解决仍需要人类专业知识和判断。
这里实际上我们只使用了AI作为中间的信息提取和判断,源头的供应以及末尾的处理仍然依赖人类的经验和专业知识。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值