自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(58)
  • 问答 (2)
  • 收藏
  • 关注

原创 飞桨AI达人创造营—让人拍案叫绝的创意都是如何诞生的?

创意固然重要,一个能付诸实践的创意更加重要。AI达人创造营课程链接很多优秀的创意,都产生于领域交叉、跨界碰撞的地方。因此我觉得一个好的创意必然来自于一个具有发散思维的人。附上一张图:保持创意的40种方法。这堂课介绍了飞桨开发者们的一些创意项目,有以下几类:趣味项目游戏复刻特效复刻效果复刻表情机器人看图写诗工业生产项目零代码实现安全帽检测模型垃圾检测所有的项目都出自于开发者们的发散性思维,看到一件事联想到另一件。我一直觉得做一个有趣的人是非常重要的,他们往往能

2021-07-27 13:15:33 71

原创 PaddleNLP - 情感分析基础课程笔记

PaddlePaddle官方课程链接????:高层API助你快速上手深度学习个人笔记以及重点均用蓝色字体标出。自然语言处理,英文Natural Language Processing,简写NLP。NLP这个概念本身过于庞大,可以把它分成“自然语言”和“处理”两部分。先来看自然语言。区分于计算机语言,自然语言是人类发展过程中形成的一种信息交流的方式,包括口语及书面语,反映了人类的思维,都是以自然语言的形式表达。现在世界上所有的语种语言,都属于自然语言,包括汉语、英语、法语等。然后再来看“处理”。

2021-02-07 16:29:37 1384 3

原创 PaddlePaddle - 人脸关键点检测课程笔记

PaddlePaddle官方课程高层API助你快速上手深度学习个人笔记以及重点均用蓝色字体标出。人脸检测技术在生活场景中的应用场景很多,某APP的变脸,美颜,现实生活中的驾驶员疲劳检查等其背后都有这项技术的加持。一、问题定义人脸关键点检测,是输入一张人脸图片,模型会返回人脸关键点的一系列坐标,从而定位到人脸的关键信息。# 环境导入import osimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt

2021-02-06 13:47:37 727

原创 Win10+CUDA10.0+cuDNN7.6.5+Anaconda安装paddlepaddle2.0【GPU】版本

文章目录开始之前:Step 1Step 2出现问题应该怎么办Step 3开始之前:请确保你的电脑上应该安装好与你显卡对应好的CUDA和cuDNN版本。如果没有安装,可以参考这篇安装CUDA以及对应的cuDNN本次安装在Anaconda虚拟环境中进行。Step 1进入Anaconda Powershell Prompt输入:conda create -n paddle2.0 python=3.7上面的 paddle2.0 是给这个环境取的名字,可以自行更改。python版本选择的是3

2021-02-04 11:34:14 383 9

原创 三种上采样方法 | Three up sampling methods

文章目录三种上采样方法线性插值 | liner interpolate代码实现反池化 | Un - PoolingTranspose Conv对Transport Conv更加细致的理解三种上采样方法在各种深度学习框架中,对于图像任务来说,数据格式通常为 NCHW,因为当数据是以这种格式排列的时候,在利用 intel GPU 加速的情况下,GPU希望读取同一个channel的图像像素是连续的,NCHW的排布正好满足需求,在访问内存的时候就是连续的了,比较方便。在做图像分割的时候,要求对图像做像素级分

2021-01-14 20:08:10 542

原创 DataWhale_组队目标检测 :)不讲武德-炼丹与品尝

上一篇网络设计博客链接:化劲儿-损失函数设计本专栏笔记用于记录学习DataWhale开源CV教程动手学CV-Pytorch遇到的问题及思考教程链接如下:动手学CV-Pytorch重要内容文章会以黄色背景或者蓝色字体标出文章目录训练和测试训练设置伪代码如下后处理目标框信息解码NMS非极大值抑制单图预测推理训练和测试前面的章节,我们已经对目标检测训练的各个重要的知识点进行了讲解,下面我们需要将整个流程串起来,对模型进行训练。目标检测网络的训练大致是如下的流程:设置各种超参数定义数据加载模块

2020-12-27 19:36:48 80

原创 DataWhale_组队目标检测 :)化劲儿-损失函数设计

在前面的网络网络设计好以后,就来到了的损失函数设计的流程。上一篇网络设计博客链接:练死劲儿-网络设计本专栏笔记用于记录学习DataWhale开源CV教程动手学CV-Pytorch遇到的问题及思考教程链接如下:动手学CV-Pytorch重要内容文章会以黄色背景或者蓝色字体标出文章目录损失函数匹配策略从Ground true box出发,匹配Prior bbox从Prior bbox出发,寻找任意Ground true box与其IOU超过阈值,进行配对损失函数Confidence lossLocat

2020-12-22 15:02:16 66

原创 DataWhale_组队目标检测 :)练死劲儿-网络设计

经过了前面对目标检测基础以及实验所用VOC数据集的学习和了解,接下来就进入到了此任务的关键步骤——网络设计本专栏笔记用于记录学习DataWhale开源CV教程动手学CV-Pytorch遇到的问题及思考教程链接如下:动手学CV-Pytorch重要内容文章会以黄色背景或者蓝色字体标出文章目录锚框锚框的取舍生成锚框的代码部分网络设计马老师请问VGG16长甚么样子?马老师,这个anchor到底行不行?对于anchor的位置微调锚框在特征图上生成锚框是目标检测任务中常见的手段。在输入图像经过网络的特征提前

2020-12-19 21:13:05 152 2

原创 DataWhale_组队目标检测 :)- 基础及数据集部分

目标检测文章目录目标检测关于交并比(IOU)的代码计算部分unsqueezeClamp目标检测是CV常见的任务之一,其在图像分类的基础上还需要实现对目标物体在图像上的位置做出判断及标记,适用于行人检测、自动驾驶、异物检测等领域。如今常见的有YOLO系列、SSD、RCNN等,其中YOLO目标检测网络因为其出色的性能和实时性高得到开发者的青睐。本专栏笔记用于记录学习DataWhale开源CV教程动手学CV-Pytorch遇到的问题及思考教程链接如下:动手学CV-Pytorch关于交并比(IOU)的代

2020-12-16 19:17:41 145 2

原创 二级炼丹Top.2

Top.29/13/2020文章目录Top.2

2020-09-14 22:10:35 63

原创 二级C语言试题刷题录

2020.9 计算机二级C语言科目文章目录2020.9 计算机二级C语言科目选择题程序流程图中带有箭头的线段表示的是结构化程序设计的基本原则不包括软件设计中模块划分应遵循的准则是在软件开发中,需求分析阶段产生的主要文档是算法的有穷性是指对长度为NNN的线性表排序,在最坏情况下,比较次数不是N(N−1)/2N(N-1)/2N(N−1)/2的排序方法是堆排序下列关于栈的叙述正确的是在数据库设计中,将E-R图转换成关系数据模型的过程属于由关系R和S通过运算得到关系T,使用的运算为选择题标黄的为正确选项程序

2020-09-07 01:12:16 214

转载 一文读懂LeNet、AlexNet、VGG、GoogleNet、ResNet到底是什么?

READING is better than SEX文章目录READING is better than SEX什么是CNN?LeNetAlexNet什么是CNN?要想知道什么LeNet、AlexNet…那就必须先明白什么是CNNCNN(Convolutional neural network) →\to→ 卷积神经网络,是当代Computer Vision中经常使用的一种网络模型。CNN中有对图像的几大基础操作,卷积、池化、以及卷积核的size和stride,最后还有应用的act,也就是激活函数

2020-07-22 11:41:16 970

原创 numpy数组里面的维度到底是如何划分和使用的???

有时候我经常忘记numpy数组的维度axis的方向是什么样子的上网查资料后来记录一下使用0值表示沿着每一列或行标签\索引值向下执行方法使用1值表示沿着每一行或者列标签模向执行对应的方法axis参数作用方向图示另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释:轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。...

2020-07-07 16:16:32 221

原创 最详细浅入深出机器学习_单变量线性回归算法

吴恩达机器学习算法(一)名不显时心不朽文章目录吴恩达机器学习算法(一)单变量线性回归问题开始的描述插入一段监督学习算法的工作方式损失(代价)函数梯度下降梯度下降的学习率使用梯度下降的线性回归演示过程单变量线性回归单变量线性回归,这种机器学习算法常被用来预测房价,商品的市值等可根据原有的数据推断出最终的实际结果的情况,属于监督学习的一种。问题开始的描述假如现在你有一个朋友,想将他的一所闲置房售出,所以来询问你他这所房子大概可以买多少钱。而你现在有一组数据,其中有近来统计的:房子的大小与售出价格的点

2020-06-30 14:28:17 179

原创 高等数学期末总复习DAY19.幂级数

DAY19.最后一篇笔记,学无止境文章目录DAY19.幂级数幂级数的收敛域(和函数的定义域)和函数幂级数幂级数的考点分两点幂级数的收敛域(和函数的定义域)收敛半径R=lim⁡n→∞∣anan+1∣R = \lim_{n \to \infty}|\frac{a_n}{a_{n+1}}|R=limn→∞​∣an+1​an​​∣收敛区间为(-R,R)讨论 x=+−Rx = +_{-} Rx=+−​R 处的敛散性遇到一些特殊的幂级数要变为标准形式1)Σn→0∞an(x−x0)n→Σn→0∞a

2020-06-21 21:19:49 562

原创 高等数学期末总复习DAY18.常数项级数、正项级数、交错级数、绝对收敛

DAY18.明天结束了文章目录DAY18.常数项级数正项级数交错级数绝对收敛常数项级数要清楚一个概念,以前我们学的数列和级数是两个不一样的概念,级数是求和的概念Σn=1∞Un\Sigma_{n =1}^{\infty} U_nΣn=1∞​Un​ 求和判断常数项级数是否收敛或发散当Sn→s,n→∞S_n \to s , n \to \inftySn​→s,n→∞则称该常数项级数收敛当Σn=1∞Un\Sigma_{n =1}^{\infty} U_nΣn=1∞​Un​收敛,则lim⁡n→∞U

2020-06-20 22:17:37 869

原创 高等数学期末总复习DAY17.第一类曲面积分、第二类曲面积分、高斯公式、

DAY17.文章目录DAY17.第一类曲面积分第二类曲面积分高斯公式第一类曲面积分对面积的曲面积分形式:∬∑f(x,y,z)ds\iint_{\sum} f(x,y,z) d_s∬∑​f(x,y,z)ds​例题求∬∑ds\iint_{\sum} d_s∬∑​ds​ 其中∑=2−(x2+y2)\sum = 2 - (x^2+y^2)∑=2−(x2+y2)在 xoy 平面上的部分解:∑\sum∑的区域画图为:总体为一个圆锥体,其中投影面为S {z=0x2+y2⩽2\begin{cases}

2020-06-19 21:10:48 3000 2

原创 高等数学期末总复习DAY16.第一类曲线积分、第二类曲线积分、格林公式

DAY16.人不能没有性情文章目录DAY16.第一类曲线积分第二类曲线积分格林公式第一类曲线积分对弧长的曲线积分基本形式为:∫Lf(x,y)ds\int_L f(x,y) d_s∫L​f(x,y)ds​其中L为弧长、f(x,y)的点在弧长L上又分为三种形式方程L:y=y(x);⇒∫abf(x,y(x))1+(yx′)2dxL : y = y(x) ; \Rightarrow \int_a^{b} f(x, y(x))\sqrt {1+(y'_x)^2}d_xL:y=y(x);⇒∫ab​f

2020-06-18 21:56:37 2731

原创 高等数学期末总复习DAY15.三重积分

DAY15.我喜欢小羊文章目录DAY15.三重积分平面直角坐标系先一后二先二后一柱面坐标球面坐标三重积分ρ(x,y,z)为密度函数\rho (x,y,z) 为密度函数ρ(x,y,z)为密度函数M=∭Ωf(x,y,z)dvM = \iiint_{\Omega} f(x,y,z) d_vM=∭Ω​f(x,y,z)dv​昨天的笔记里面讲的是二重积分,二重积分常常用来求区域的面积。今天的三重积分相对于二重积分要更进一步,用来求物体的质量积分形式有三个不同的坐标系:平面直角坐标系而平面直角坐标里面又

2020-06-17 21:18:41 606 1

原创 高等数学期末总复习DAY14.二重积分

DAY14.我不想过那种一眼望得到头的人生,所以我努力摆脱困境。文章目录DAY14.二重积分二重积分二重积分的例题一般要求你求平面区域的面积所以这里就分两种坐标计算的题型平面直角坐标I=∬Df(x,y)dxdyI = \iint_D f(x,y)d_xd_yI=∬D​f(x,y)dx​dy​X型区域:I=∫abdx∫y1(x)y2(x)f(x,y)dyI = \int_a^{b} d_x \int_{y_1(x)}^{y_2(x)} f (x,y)d_yI=∫ab​dx​∫y1​(x)y

2020-06-16 21:29:12 559 2

原创 高等数学期末总复习DAY13.多元函数微分的几个应用、方向导数和梯度、多元函数求极值、

DAY13.what you want文章目录DAY13.1.多元函数的微分2.方向导数和梯度3.多元函数求极值1.多元函数的微分多元函数求微分主要有两点求曲面的切平面和法线若曲面为 S :F(x,y,z)=0,切点为m0(x0,y0,z0),曲面法向量为n⃗=(Fx,Fy,Fz)F(x,y,z) = 0 ,切点为m_0(x_0,y_0,z_0) ,曲面法向量为 \vec n = (F_x,F_y,F_z)F(x,y,z)=0,切点为m0​(x0​,y0​,z0​),曲面法向量为n=(Fx​

2020-06-15 22:24:39 191

原创 高等数学期末总复习DAY12.复合函数的链式求导、隐函数求导、

DAY12.鸽了一天,它又来了文章目录DAY12.1.复合函数的链式求导2.隐函数求导1.复合函数的链式求导这部分的内容也比较简单,有两个法则,按照正常步骤来一般就可以解出来题目u对x求偏导,从图中我们可以找到两条路径,u→z→x和u→N→xu \to z \to x 和 u \to N \to xu→z→x和u→N→x所以 : ∂u∂x=∂u∂z∂z∂x+∂u∂N∂N∂x\frac{\partial u}{\partial x} = \frac{\partial u}{\partial

2020-06-14 21:33:27 366 1

原创 高等数学期末总复习DATY11.平面与空间直线、二元函数的极限、偏导数、全微分

DAY11.布达佩大饭店文章目录DAY11.1.平面与空间直线对于平面来说有两种方程:直线的方程1.平面与空间直线对于平面来说有两种方程:已知点(x0,y0,z0)(x_0,y_0,z_0)(x0​,y0​,z0​) 平面法向量(A,B,C)平面的点法式方程:A(x−x0)+B(y−y0)+C(z−z0)=0A(x-x_0)+B(y-y_0)+C(z-z_0) = 0A(x−x0​)+B(y−y0​)+C(z−z0​)=0平面的一般方程:Ax+By+Cz+D=0Ax + By +

2020-06-12 21:27:33 253 1

原创 高等数学期末总复习DATY10.求平面图形的面积、求旋转体的体积、曲线积分

DAY10.Blind Tom文章目录DAY10.1.求平面图形的面积2.求旋转体的体积3.曲线积分1.求平面图形的面积利用定积分来求平面图形的面积无非是要注意上下函数,谁减谁以及积分的区域如图:S的面积s=∫x1x2y1(x)−y2(x)dxs = \int_{x_1}^{x_2} y_1(x) - y_2(x) d_xs=∫x1​x2​​y1​(x)−y2​(x)dx​S的面积S=∫y1y2x1(y)−x2(y)dxS = \int_{y_1}^{y_2} x_1(y) - x_

2020-06-11 21:45:43 329

原创 高等数学期末总复习DATY9.积分上限函数、基本定积分计算、定积分换元法、定积分的分部积分、三角函数的N次方积分、反常积分(广义积分)

DAY9.最近喜欢听加州旅馆文章目录DAY9.1.积分上限函数2.基本定积分计算3.定积分换元法4.定积分的分部积分5.三角函数的N次方积分6.反常积分(广义积分)1.积分上限函数积分上限函数和定积分以及之前的函数积分没有什么很大的区别,只不过是多了一个积分区域而已积分上限函数型如:∫axf(x)dx\int_a^xf(x)d_x∫ax​f(x)dx​里面有一点需要注意,就是积分上限函数的求导(∫axf(x)dx)′=f(x)(\int_a^x f(x)d_x )' = f(x)(∫ax​

2020-06-10 20:54:44 1229 1

原创 pandas中DataFrame的values属性、数据聚合之agg方法

pandas 的 DataFrame对象,知道它们由三个组成并存储为属性的组件很有用:. values:对应的二维NumPy值数组。. columns:列索引:列名称。. index:行的索引:行号或行名。其中value属性我一直搞混淆下面出一个示例:原始的DataFrame而其中的value属性的值为:数据聚合之agg方法agg方法常用于定于自己的聚合函数例如我们想对数据做极差,官方没有提供极差计算的函数,利用agg方法pd['Math'].agg(lambda x:x.max(

2020-06-09 23:33:12 1194

原创 高等数学期末总复习DAY8. 简单有理分式积分以及分部积分

DAY8.默默成为一个很强的人文章目录DAY8.简单有理分式积分2.分部积分简单有理分式积分有理分式是形如 P(x)Q(x)\frac{P(x)}{Q(x)}Q(x)P(x)​的分式其解法大概分三种:分式形式为:Ax+a\frac{A}{x+a}x+aA​我们可以做如下变换:∫Ax+adx=∫Ax+adx+a=Aln⁡(x+a)+c\int \frac{A}{x+a} d_x = \int\frac{A}{x+a}d_{x+a} = A\ln(x+a)+c∫x+aA​dx​=∫x+aA​

2020-06-09 21:16:22 577

原创 高等数学期末总复习 DAY7.基本不定积分、凑积分、第二类换元法

DAY7.今日无感叹文章目录DAY7.1.基本不定积分2.凑积分3.第二类换元法1.基本不定积分这里有一个概念我经常弄混淆,那就是积分是求导数的原函数,而微分是相当于求导加上dxd_xdx​首先有基本的导数公式:然后有基本的不定积分的公式:例题1、求 ∫xxdx\int x \sqrt x d_x∫xx​dx​解:原式= ∫x∗x12dx\int x* x^{\frac{1}{2}} d_x∫x∗x21​dx​= ∫x32dx\int x^{\frac{3}{2}} d_x∫x23

2020-06-08 21:39:45 701

原创 高等数学期末总复习 DAY6.洛必达求极限、不等式单调性证明、判断拐点、曲率以及曲率半径

DAY6.少因为自己一点点的努力就轻易感动自己文章目录DAY6.1.洛必达求极限2.不等式单调性的证明3.判断拐点4.曲率以及曲率半径1.洛必达求极限一般求00,∞∞\frac{0}{0},\frac{\infty}{\infty}00​,∞∞​型的极限时,我们使用洛必达定理:lim⁡f(x)g(x)=lim⁡f′(x)g′(x)\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}limg(x)f(x)​=limg′(x)f′(x)​当然只有当函数满足

2020-06-07 20:53:42 459

原创 Pandas中value_counts、.loc、.iloc、np.linspace()用法解释

1.Value_counts在数据统计的时候我们经常会用到value_counts模块;一般value_counts用于对Series的数据频率分析例如:df = pd.DataFrame({'区域' : ['西安', '太原', '西安', '太原', '郑州', '太原'], '10月份销售' : ['0.477468', '0.195046', '0.015964', '0.259654', '0.856412', '0.259644'],

2020-06-06 22:02:49 1309

原创 高等数学期末总复习 DAY 5. 罗尔定理证明题 拉格朗日、柯西中值定理 泰勒公式及麦克劳林公式

DAY 5.文章目录DAY 5.1.罗尔定理2.拉格朗日定理3.柯西中值定理4.泰勒公式及麦克劳林公式1.罗尔定理罗尔定理描述如下:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。例题1若方程 a0xn+a1xn−1+...+an−1x=0a_0x^n+a_1x^{n-1}+...+a_{n-1}x = 0a0​xn+a1​xn−1+...+an−

2020-06-06 15:22:41 2089 1

原创 高等数学期末总复习 DAY4. 利用莱布尼茨定理求高阶导 隐函数求导 对数求导法 参数函数求导 用导数求切线、法线 函数的微分

DAY 4.这世上总要有个明白人,懂得克制。文章目录DAY 4.1. 利用莱布尼茨定理求高阶导2.隐函数求导3.对数求导4.参数函数求导1. 利用莱布尼茨定理求高阶导只看两点:1、常用导数的高阶公式2、例题例题:2.隐函数求导这种方程里面y是x的函数,但是不显性。例题1设 y=y(x),y2−2xy+9=0y = y(x), y^2 - 2xy +9 = 0y=y(x),y2−2xy+9=0 求 dydx\frac{d_y}{d_x}dx​dy​​解:方程两边同时对x求导得2y

2020-06-05 21:03:37 1447

原创 高等数学期末总复习 DAY 3.利用导数定义求极限 判断连续与可导的关系 关于导数定义的证明题 基本求导 基本高阶求导 抽象函数求导

DAY 3.一路陪我走过来的从来都不是什么善良正直正能量,而是虚荣嫉妒不甘心文章目录DAY 3.1. 利用导数定义求极限2.判断连续与可导的关系3.关于导数定义的证明题4.基本复合函数求导5. 基本高阶求导6. 抽象函数求导1. 利用导数定义求极限导数的两种定义f′(x0)f'{(x_0)}f′(x0​) = lim⁡x→x0f(x)−f(x0)x−x0\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}limx→x0​​x−x0​f(x)−f(x0​)​

2020-06-04 16:50:03 4833 3

原创 高等数学期末总复习 DAY 2.判断间断点类型 零点、

补充DAY 1 函数连续性三种方式判断函数连续lim⁡x→x0f(x)\lim_{x \to x_0} f(x)limx→x0​​f(x) = f(x0)f(x_0)f(x0​)lim⁡Δx→0Δy=0\lim_{\Delta x \to 0} \Delta y =0limΔx→0​Δy=0 或者 lim⁡Δx→0f(Δx+x0)=f(x0)\lim_{\Delta x \to 0} f(\Delta x + x_0) = f(x_0)limΔx→0​f(Δx+x0​)=f(x0​)lim⁡x→x

2020-06-03 18:41:08 1098 1

原创 高等数学期末总复习 DAY 1. 求极限 判断函数连续性

求极限利用四则运算求极限利用等差、等比数列的性质求极限抓大头求极限分子分母有理化求极限一个重要结论重要极限夹逼定理的应用等价无穷小的代换1.利用四则运算求极限例题1.lim⁡x→1(11−x−31−x3)\lim_{x \to 1}(\frac {1} {1-x} - \frac{3}{1-x^3} )limx→1​(1−x1​−1−x33​)解:先进行四则运算后进行通分运算原式:=lim⁡x→1(11−x−3(1−x)(1+x+x2))\lim_{x\to 1}(\frac

2020-06-02 23:26:06 632

原创 箱形图怎么看,以及它反映了什么?

在对数据进行比较的时候,我们通常会使用直方图、饼图、折线图来对数据差异进行显化,而箱形图很少出现在我们的视野中。今天在看代码的时候看到箱形图觉得很有意思那么箱形图的价值在哪里?我觉得最大的优点就是不受异常值的影响,可以以一种相对稳定的方式描述数据的离散分布情况。有一个博主的博客里面的一张介绍箱型图的图很直观:(转自:箱形图(python画箱线图))而其中补充的一点就是:一般异常值用⭕表示,偏激异常值用 * 表示对于Q1和Q3的值,这里举个例子就是:上面的为Q1,下面的为Q3。而四分位

2020-05-28 20:39:23 8084

原创 NumPy中几种常见random模块的用法解释

导入包from numpy import random1、numpy.random.uniform(low=0.0, high=1.0, size=None)生出size个符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0)random.uniform()0.3999807403689315random.uniform(size=1)array([0.55950578])random.uniform(5, 6)5.293682668235986ra

2020-05-13 23:56:36 180

原创 万字长文带你玩转2020全国大学生计算机技能应用大赛—C语言模考整理解析

1.判断下列常量不合法的是:选项ValueA0128B-45C123.5e4D’ \n ’答案:A(c语言常量中以0开头为8进制数,其中不可能出现8;)浮点常量由整数部分、小数点、小数部分和指数部分组成。您可以使用小数形式或者指数形式来表示浮点常量。小数形式中必须有整数部分和小数部分,或者两者同时存在指数形式中必须有小数点和指数 e/...

2020-05-04 00:50:27 6986 9

原创 Numpy 100经典练习题前50题错题整理

吹灭读书灯,一身都是月。Print the numpy version and the configuration (★☆☆)print(np.__version__)np.show_config()How to find the memory size of any array(★☆☆)Z = np,ones([10,10])print("%d bytes" % (Z.si...

2020-04-25 23:28:15 302

原创 Numpy 中对数组属性操作方法一览表(详)

numpy中对数组属性操作方法的总结序号作用1基本属性a.dtype数组元素类型 float32,uint8,...a.shape数组形状 (m,n,o,...)a.size数组元素数a.itemsize每个元素占字节数a.nbytes所有元素占的字节a.ndim数组维度2形状相关a.flat所有元素的迭代器...

2020-04-23 00:22:19 137

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除