高等数学期末总复习 DAY 2.判断间断点类型 零点、

补充DAY 1 函数连续性

三种方式判断函数连续

  1. lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x) = f ( x 0 ) f(x_0) f(x0)
  2. lim ⁡ Δ x → 0 Δ y = 0 \lim_{\Delta x \to 0} \Delta y =0 limΔx0Δy=0 或者 lim ⁡ Δ x → 0 f ( Δ x + x 0 ) = f ( x 0 ) \lim_{\Delta x \to 0} f(\Delta x + x_0) = f(x_0) limΔx0f(Δx+x0)=f(x0)
  3. lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0{^-}} f(x) = \lim_{x \to x_0{^+}} f(x) = \lim_{x \to x_0} f(x) limxx0f(x)=limxx0+f(x)=limxx0f(x)

当函数关系满足上面三种情况则可以说函数连续。

高阶、低阶、等价无穷小的判断

例如:
α β = A \frac{\alpha}{\beta} = A βα=A

  1. 若A为常数,则 α \alpha α β \beta β的同阶无穷小。
  2. 若A为常数且等于1,则 α \alpha α β \beta β的等价无穷小。
  3. α β ∼ 0 \frac{\alpha}{\beta} \sim 0 βα0 α \alpha α β \beta β的高阶无穷小。
  4. α β ∼ ∞ \frac{\alpha}{\beta} \sim \infty βα α \alpha α β \beta β的低阶无穷小。

DAY 2.

判断间断点的类型

第一类间断点:左右极限都存在
  1. 可去间断点: f ( x 0 − ) = f ( x 0 + ) ≠ f ( x 0 ) f(x_0{^-}) = f(x_0{^+}) \neq f(x_0) f(x0)=f(x0+)=f(x0)
  2. 跳跃间断点: f ( x 0 − ) ≠ f ( x 0 + ) f(x_0{^-}) \neq f(x_0{^+}) f(x0)=f(x0+)
第二类间断点:左右极限至少有一个不存在
  1. 无穷间断点: f ( x 0 − ) f(x_0{^-}) f(x0)或者 f ( x 0 + ) f(x_0{^+}) f(x0+) ∼ ∞ \sim \infty
  2. 震荡间断点:左右极限振荡不存在的间断点

三种判断间断点的题型

1 f ( x ) = A ( x ) B ( x ) f(x) = \frac{A(x)}{B(x)} f(x)=B(x)A(x)

A ( x ) ≠ 0 A(x) \neq 0 A(x)=0 B ( x ) = 0 B(x) = 0 B(x)=0 则 x 为第二类无穷间断点;
A ( x ) = 0 A(x) = 0 A(x)=0 B ( x ) = 0 B(x) = 0 B(x)=0 此时函数的极限一般存在,x 为第一类可去间断点

例题1

判断 f ( x ) = x 2 − 1 x 2 − 3 x + 2 f(x) = \frac{x^2 -1}{x^2 - 3x + 2} f(x)=x23x+2x21 的间断点类型

解:原式可以化简为:

f ( x ) = x 2 − 1 ( x − 1 ) ( x − 2 ) f(x) = \frac{x^2 -1}{(x - 1)(x - 2)} f(x)=(x1)(x2)x21

则 x = 1 或者 x = 2 为间断点
1)取 x = 1的情况

lim ⁡ x → 1 x 2 − 1 ( x − 1 ) ( x − 2 ) \lim_{x \to 1} \frac{x^2 -1}{(x-1)(x - 2)} limx1(x1)(x2)x21

= lim ⁡ x → 1 x + 1 x − 2 \lim_{x \to 1} \frac{x +1}{x - 2} limx1x2x+1

= - 2

lim ⁡ x → 1 + f ( x ) = \lim_{x \to 1^+} f(x) = limx1+f(x)= lim ⁡ x → 1 − f ( x ) \lim_{x \to 1^-}f(x) limx1f(x) = -2

但是 f ( x ) f(x) f(x)在x = 1 时无定义,则x = 1为第一类可去间断点。

2)取 x = 2 的情况

lim ⁡ x → 2 x 2 − 1 ( x − 1 ) ( x − 2 ) \lim_{x \to 2} \frac{x^2 -1}{(x-1)(x - 2)} limx2(x1)(x2)x21 ∼ 3 0 = ∞ \sim \frac{3}{0} = \infty 03=

则 x = 2 为第二类无穷间断点

2

f ( x ) = { . . . ( x ! = x 0 ) . . . ( x = x 0 ) f(x)=\left\{ \begin{aligned} ... & & (x != x_0) \\ ... & & (x = x_0) \\ \end{aligned} \right. f(x)={......(x!=x0)(x=x0)

3

f ( x ) = { . . . ( x ≤ x 0 ) . . . ( x > x 0 ) f(x)=\left\{ \begin{aligned} ... & & (x \le x_0) \\ ... & & (x > x_0) \\ \end{aligned} \right. f(x)={......(xx0)(x>x0)

例题2
判断下列函数间断点的类型:

f ( x ) = { x − 1 ( x ≤ 1 ) 3 − x ( x > 1 ) f(x)=\left\{ \begin{aligned} x - 1 & & (x \le 1) \\ 3 - x & & (x > 1) \\ \end{aligned} \right. f(x)={x13x(x1)(x>1)

解:依题意得x = 1为函数间断点
则:
lim ⁡ x → 1 − x − 1 \lim_{x \to 1^-} x - 1 limx1x1 = 0
lim ⁡ x → 1 + 3 − x \lim_{x \to 1^+} 3 - x limx1+3x = 2
所以:
lim ⁡ x → 1 − x − 1 \lim_{x \to 1^-} x - 1 limx1x1 ≠ \neq = lim ⁡ x → 1 + 3 − x \lim_{x \to 1^+} 3 - x limx1+3x
当x = 1时 函数有定义
即x = 1 为第一类跳跃间断点

注意

在遇到 a x a^x ax a 1 x a^{\frac{1}{x}} ax1 e x e^x ex e 1 x e^{\frac{1}{x}} ex1 arctan ⁡ x \arctan x arctanx arctan ⁡ 1 x \arctan \frac{1}{x} arctanx1 等函数求极限时,要讨论左右极限

因为:

e 1 x e^{\frac{1}{x}} ex1

x → 0 − x \to 0^- x0 1 x → − ∞ \frac{1}{x} \to -\infty x1 此时 lim ⁡ x → 0 − e 1 x \lim_{x\to0^-}e^{\frac{1}{x}} limx0ex1 = 0

x → 0 + x \to 0^+ x0+ 1 x → ∞ \frac{1}{x} \to \infty x1 此时 lim ⁡ x → 0 + e 1 x \lim_{x\to0^+}e^{\frac{1}{x}} limx0+ex1 = ∞ \infty

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值