VGAER(非概率版本为GAER)
本文创新:
- modularity index Q(模块化参数Q)
- Variational Graph AutoEncoder (变分图自编码)
- Reconstruction(重构模块化矩阵B)
通过将高阶模块信息与网络特征相融合
B+A+X而不是A+X
VGAE:重构的是邻接矩阵A
VGAER:重构的是模块化矩阵B(更加合理,使得划分更加明显,更优秀)
对比如下图:
A: network structure(在通过消息传递阶段,被隐式捕获,而不是被特地的重构)(adjacent matrix A)
X: node features
B: modularity matrix
1、Modularity Maximization
思想:社群内的连接密度应该大于随机网络的连接密度。即如果两点属于同一个社群,这两点更倾向于有连接。同一社群连接越多,Q越大,模块化越好。
Q:the modularity index(模块化指数)
M:the total number of edges of the network(连接总数)
aij:the adjacency matrix element(邻接矩阵的i行j列值)
ki:该点的度数
Zij:若i、j属于同一个社区划分则为1,否则为0
2,Reconstruction
定义modularity matrix B = [bij ]as
引入矩阵Z = [zij ] ∈ R N×K,zi是社群成员向量,K表示社群成员向量的维度
Zij=1表示第i个节点属于第j个社区。
公式1可被简化为:
引入ZTZ作为常数N来relax这个问题。
根据瑞利熵,我们知道了在relaxation condition下的模块化程度最大化问题的解决方案Z是:模块化程度矩阵B的前K个最大特征向量。
根据矩阵重构理论,模块化最大化和模块化矩阵重构是等价的。
3、The model
- 编码器又被称为Inference model,即推理模型(和VGAE一致)
节点表示向量的后验概率分布:
q(zi | B,A):a variational approximation of node i’s true posterior distribution based on Gaussian family
然后,我们使用两个图神经网络µ=GCNµ(B,A)和log σ = GCNσ(B,A)作为编码器,以拟合节点i的平均向量µ和标准差向量σ。高斯分布的均值和方差由两个GCN确定。
有了均值和方差后,我们就能唯一地确定一个多维高斯分布,然后从中进行采样以得到节点的向量表示Z,也就是说,通过两个GCN我们得到了所有节点向量的均值和方差,然后再从中采样形成节点向量。其中GCN服从下列同一形式。
W0和W1代表第一层和第二次的权值矩阵,W0在GCNσ和GCNµ之间共享。
- 解码器又被称为Generative model,即生成模型(和VGAE不一致)
设计了基于交叉熵的点积解码器去重建模块化分布。分为两部分,分层与原始一致的概率,和不一致的概率再使用VGAE的重新权重方法。
与VGAE不一致的地方:
4、Optimization
根据VAE论文,变分下界L(φ,θ)需要最大化以使得Q最大:
第一部分:重构损失,从Z推出B的可能性,越大表示q越接近真实分布P,越大越好。
第二部分:第二部分表示利用GCN得到的分布q与标准高斯分布p(Z)间的KL散度,也就是要求分布q尽量与标准高斯分布相似,越相似,该部分值越小。
对公式9取log:
我们可以从交叉熵的角度理解上述式子
交叉熵公式:
式子14构造了关于输入的真实分布和点积重构分布的负交叉熵。使它最大化等价于最小化两个分布的距离,等于减小重构损失。
VGAE的相关知识
µ = GCNµ(X, A) is the matrix of mean vectors µi
VAE的相关知识
The generative model (encoder)
variational approximation (decoder)
µ和σ是x和变分参数φ的简单函数, µ and σ are simply functions of x and the variational parameters φ