community detection:VGAER论文学习笔记

VGAER(非概率版本为GAER)

本文创新

  1. modularity index Q(模块化参数Q)
  2. Variational Graph AutoEncoder (变分图自编码)
  3. Reconstruction(重构模块化矩阵B)

通过将高阶模块信息与网络特征相融合

B+A+X而不是A+X

VGAE:重构的是邻接矩阵A

VGAER:重构的是模块化矩阵B(更加合理,使得划分更加明显,更优秀)

对比如下图:

A: network structure(在通过消息传递阶段,被隐式捕获,而不是被特地的重构)(adjacent matrix A)

X: node features

B: modularity matrix

1、Modularity Maximization

思想:社群内的连接密度应该大于随机网络的连接密度。即如果两点属于同一个社群,这两点更倾向于有连接。同一社群连接越多,Q越大,模块化越好。

Q:the modularity index(模块化指数)

M:the total number of edges of the network(连接总数)

aij:the adjacency matrix element(邻接矩阵的i行j列值)

ki:该点的度数

Zij:若i、j属于同一个社区划分则为1,否则为0

2,Reconstruction

定义modularity matrix B = [bij ]as

引入矩阵Z = [zij ] ∈ R N×K,zi是社群成员向量,K表示社群成员向量的维度

Zij=1表示第i个节点属于第j个社区。

公式1可被简化为: 

引入ZTZ作为常数N来relax这个问题。

根据瑞利熵,我们知道了在relaxation condition下的模块化程度最大化问题的解决方案Z是:模块化程度矩阵B的前K个最大特征向量。

根据矩阵重构理论,模块化最大化和模块化矩阵重构是等价的。

3、The model

  1. 编码器又被称为Inference model,即推理模型(和VGAE一致)

节点表示向量的后验概率分布:

q(zi | B,A):a variational approximation of node i’s true posterior distribution based on Gaussian family

然后,我们使用两个图神经网络µ=GCNµ(B,A)和log σ = GCNσ(B,A)作为编码器,以拟合节点i的平均向量µ和标准差向量σ。高斯分布的均值和方差由两个GCN确定。

有了均值和方差后,我们就能唯一地确定一个多维高斯分布,然后从中进行采样以得到节点的向量表示Z,也就是说,通过两个GCN我们得到了所有节点向量的均值和方差,然后再从中采样形成节点向量。其中GCN服从下列同一形式。

W0和W1代表第一层和第二次的权值矩阵,W0在GCNσ和GCNµ之间共享。

  1. 解码器又被称为Generative model,即生成模型(和VGAE不一致)

设计了基于交叉熵的点积解码器去重建模块化分布。分为两部分,分层与原始一致的概率,和不一致的概率再使用VGAE的重新权重方法。

与VGAE不一致的地方:

4、Optimization

根据VAE论文,变分下界L(φ,θ)需要最大化以使得Q最大:

第一部分:重构损失,从Z推出B的可能性,越大表示q越接近真实分布P,越大越好。

第二部分:第二部分表示利用GCN得到的分布q与标准高斯分布p(Z)间的KL散度,也就是要求分布q尽量与标准高斯分布相似,越相似,该部分值越小。

对公式9取log:

我们可以从交叉熵的角度理解上述式子

交叉熵公式:

式子14构造了关于输入的真实分布和点积重构分布的负交叉熵。使它最大化等价于最小化两个分布的距离,等于减小重构损失。

VGAE的相关知识

µ = GCNµ(X, A) is the matrix of mean vectors µi 

VAE的相关知识

The generative model (encoder)

variational approximation (decoder)

µ和σ是x和变分参数φ的简单函数,   µ and σ are simply functions of x and the variational parameters φ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值