基于libsvm的高光谱影像分类

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/james_616/article/details/77686999

近两周来,一直在看关于高光谱影像分类及目标检测的文章。仅仅是看,感觉并没有真正学会什么,不如自己动手实现一下。所以,从最简单的开始,用libsvm来实现高光谱影像的分类。
高光谱数据是来自ROSIS-03的Pavia Univeisity数据,共103个通道,包括9种地物类别。由PCA(主成分分析)得到的三个主成分组成的假彩色图像如下图所示:


pseudocolor

数据同时还提供了地面真实值,如下图所示:


groundtruth

从这些真实中选出一些构成训练集,剩下的作为测试集。我从各个类别中随机选出500个样本点最为训练集,用剩余的验证得到精度为73.8217%。然后用训练得到的model来对整个数据进行分类,得到以下分类结果。


classified

可以看出有些地物分类的正确率较高,有些则不行,可能是跟选取的训练样本数目有关。下面我将进一步研究如何提高SVM的分类正确率。

展开阅读全文

没有更多推荐了,返回首页