数据治理审计范围与方法

商业银行的数据治理审计保驾护航,技术引领价值升级,主要是基于商业银行的数据治理体系框架,参考内部制度和相关监管规定,对商业银行数据治理的组织架构、制度流程、质量管理、系统与数据管理、数据价值实现方面的全面审计。

在应对监管要求与满足经营发展的双重挑战下,内部审计作为第三道防线,应以独立、客观的视角对银行数据治理范畴内的各项工作进行检查和评价,促进对全行数据资产的重视与积累,促进全行数据治理体系的完善。同时,通过引入审计技术创新,逐步实现审计数据资产应用的系统性、立体化、全面化、智慧化的价值升级。

数据治理的审计范围应至少包括数据治理组织架构、数据管理、数据质量、数据安全、数据资产价值等方面。

  • 数据治理架构审计

制度体系建设是数据治理的基本工作,银行需针对数据治理工作建立起层次鲜明、结构清晰的制度及流程体系。数据治理架构审计工作主要是自上而下审计银行数据治理体系建设情况,重点关注数据治理组织架构和制度体系,数据治理资源配置情况,一二三道防线对于数据治理的职能与边界,数据全生命周期的管理流程以及数据文化建设情况。

银行应建立纵向的数据治理管理组织,形成三道防线的管理组织网络。数据管理部门应负责牵头全行的数据治理体系建设与管理,业务部门应当负责本业务领域的数据治理,管理业务条线数据源,确保准确记录和及时维护,落实数据质量控制机制,执行监管数据相关工作要求。

二道防线由合规或风险的管理部门负责,负责数据治理体系的定期合规检查和数据风险管理。

第三道防线对第一及第二道防线部门的工作进行事后稽核、审计和监察等。通过三道防线,形成纠错防弊的机制性保障,才能夯实管理基础,有效控制偏差和风险。

  • 数据管理审计

银行通过建设各类数据管理工具和方法,提升数据管理水平及效率。数据管理的审计工作主要针对数据管理工具和方法审计其有效性、充分性和安全性,数据管理工具和方法包括但不限于数据战略、数据标准、信息系统和监管统计系统、数据安全策略、应急预案、问责机制、自我评估机制等。

银行应当结合自身发展目标和监管要求等,制定客观、可实现的数据战略并确保有效执行和适时修订。银行应当建立全行统一的且符合国家标准、行业标准、监管要求的数据标准,并且逐步推进数据标准的有效落地,实现不同系统中数据标准的统一规范以便于更好、更便捷地实现数据共享。

通过逐步开发信息系统,提高各项业务和管理数据的系统覆盖率;通过持续完善监管统计系统,提高监管报送自动化比率。

数据安全策略应当符合法规要求、有效保护隐私数据、明确访问权限、区分安全等级等。与此同时,银行应当建立数据应急预案,并建立数据治理问责机制,定期开展数据治理自我评估,保障数据治理持续发展。

  • 数据质量审计

数据质量是数据创造价值的保障基石,高质量的数据为数据统计、分析和应用提供了可信任的必要条件。数据质量审计工作评估数据风险性和健康度,主要评估纬度包括数据的真实性、准确性、连续性、完整性和及时性。

银行应当建立一系列有效的方法和流程提升数据质量。首先,应当明确定义数据质量需求和数据质量范围,在此基础上选定测量数据、制定测量规则,通过设计和建设数据质量检核模型进行数据质量问题识别,并深入分析原因。再次,针对发现的质量问题分派责任方,拟定改进方案并执行改进和跟踪评估。

建立数据质量考核机制,且针对重要甚至重大问题进行有效问责。通过长时间积累的质量问题,进行问题分类管理,形成和丰富质量问题知识库,持续完善质量检核模型及问题流程化管理。

数据质量提升是数据治理效果的最终体现,针对数据的审计,能够最直观发现数据是否符合标准规范、报送要求,以及数据质量问题。在开展针对数据的审计时,应首先明确测试系统范围,进而明确测试数据范围,确认数据量,最终通过数据校验等数据审计规则的开发,校验数据的一致性、准确性、完整性、唯一性、及时性、真实性、和精确性。

维度名称

维度说明

数据一致性(Consistent

相同数据项在不同系统或同一系统内不同表格记录多次时,多个数据值是否相同。

数据准确性(Valid

数据是否符合数据标准中的业务定义。例如在数据项押物名称存储了押物所有权人名称。

数据完整性(Complete)

业务需求所需的关键数据项在系统中是否有定义,或者关键数据项是否都采集了数据。例如合同有效日期是否有未填写的数据记录。

数据唯一性(Unique)

是否满足一个业务唯一关键数据项值组合仅对应一条记录,例如一个组织机构代码仅有一条客户信息记录。

数据及时性(Timely)

是否能够在数据需求定义要求的期限内获得最新的数据,或按要求的更新频率刷新数据值。

数据真实性(Accuracy

数值是否反映了真实的业务情况。

数据精确性(Precise

数据的精确度是否满足要求。

  • 数据安全审计

大数据时代新形势下,数据安全、隐私安全乃至数据平台安全等均面临新威胁与新风险。数据安全是数据治理中面临的重要问题,也是数据治理审计关注的重点之一。数据安全审计工作依据信息安全管理相关的标准,如ISO/IEC 17799、COSO、COBIT、ITIL、NIST SP800系列等。

银行业应当建立数据安全策略与标准,依法合规采集、应用数据、保护客户隐私、划分数据安全等级、明确访问权限、监控访问行为,持续完善数据安全技术。

  • 数据资产价值审计

数据资产正在为银行带来丰富的价值创造,其价值也成为衡量银行价值的重要影响因素。数据资产价值的审计工作包括盘点银行的数据资产,评估数据资产为银行带来的价值能力,发现数据资产现状的不足。

银行应当了解全行的数据资产,在风险管理、业务经营与内部控制等方面挖掘数据资产应用潜力,提高数据使用和应用效率,结合定性和定量的指标定期评估数据资产产生的效益、带来的价值度量,结合绩效考核进行数据资产管理完善。如在新产品的开发中数据资产带来多少收益、在客户精准营销中数据资产带来了多少获客数量等。通过数据驱动,提高管理精细化程度和核心竞争力,发挥数据价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jane9872

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值