# 用二元泊松模型预测2022年世界杯淘汰赛结果

## 二元泊松模型

P X , Y ( x , y ) = P r ( X = x , Y = y ) = exp ⁡ { − ( λ 1 + λ 2 + λ 3 ) } λ 1 x x ! λ 2 y y ! × ∑ k = 0 m i n ( x , y ) ( x k ) ( y k ) k ! ( λ 3 λ 1 λ 2 ) k \begin{aligned} P_{X,Y}(x,y)&=Pr(X=x,Y=y)\\ &=\exp\{-(\lambda_1+\lambda_2+\lambda_3)\}\frac{\lambda_1^x}{x!}\frac{\lambda_2^y}{y!}\times\sum_{k=0}^{min(x, y)}\begin{pmatrix}x\\k\end{pmatrix}\begin{pmatrix}y\\k\end{pmatrix}k!(\frac{\lambda_3}{\lambda_1\lambda_2})^k \end{aligned}

X n , Y n ∣ λ 1 n , λ 2 n , λ 3 n ∼ BivPoisson ( λ 1 n , λ 2 n , λ 3 n ) log ⁡ ( λ 1 n ) = μ + h o m e + a t t h n + d e f a n log ⁡ ( λ 2 n ) = μ + a t t a n + d e f h n log ⁡ ( λ 3 n ) = β 0 + γ 1 β h n h o m e + γ 2 β a n a w a y + γ 3 β w n \begin{aligned} X_n,Y_n \mid \lambda_{1n},\lambda_{2n},\lambda_{3n}&∼\text{BivPoisson}(\lambda_{1n},\lambda_{2n},\lambda_{3n})\\ \log(\lambda_{1n})&=\mu+home+att_{h_n}+def_{a_n}\\ \log(\lambda_{2n})&=\mu+att_{a_n}+def_{h_n}\\ \log(\lambda_{3n})&=\beta_0+\gamma_1\beta_{h_n}^{home}+\gamma_2\beta_{a_n}^{away}+\gamma_3\beta {w_n} \end{aligned}

λ 1 n , λ 2 n \lambda_{1n}, \lambda_{2n} 分别表示主队和客队的进球率

μ \mu 表示截距项

h o m e home 代表主场效应，众所周知在自己的主场踢球是由很多优势的（更熟悉场地、更适应气候、更热情的球迷…）;

a t t t att_t d e f t def_t 分别表示每只球队的进攻能力防守能力，公式中下标 t t 写作 h n , a n h_n, a_n ，分别表示主队和客队的第 n n 场比赛；

β h n h o m e \beta_{h_n}^{home} β a n a w a y \beta_{a_n}^{away} 分别代表主队和客队的参数；

w n w_n 是第 n n 场比赛的协方差向量，用于建模协方差项；

β \beta 是对应的回归系数向量；

∑ t = 1 T a t t t = 0 , ∑ t = 1 T d e f t = 0 \sum_{t=1}^Tatt_t=0, \qquad \sum_{t=1}^Tdef_t=0

a t t T = − ∑ t = 1 T − 1 a t t t , d e f T = − ∑ t = 1 T − 1 d e f t att_T = -\sum_{t=1}^{T-1}att_t, \qquad def_T = -\sum_{t=1}^{T-1}def_t

## 最大似然法

L ( θ ) = ∏ n = 1 N exp ⁡ { − ( λ 1 n + λ 2 n + λ 3 n ) } λ 1 n x n x n ! λ 2 n y n y n ! × ∑ k = 0 m i n ( x n , y n ) ( x n k ) ( y n k ) k ! ( λ 3 n λ 1 n λ 2 n ) k L(\theta) = \prod_{n=1}^N\exp\{-(\lambda_{1n}+\lambda_{2n}+\lambda_{3n})\}\frac{\lambda_{1n}^{x_n}}{x_n!}\frac{\lambda_{2n}^{y_n}}{y_n!}\times\sum_{k=0}^{min(x_n, y_n)}\begin{pmatrix}x_n\\k\end{pmatrix}\begin{pmatrix}y_n\\k\end{pmatrix}k!(\frac{\lambda_{3n}}{\lambda_{1n}\lambda_{2n}})^k

θ ^ = a r g m a x θ ∈ Θ L ( θ ) \hat\theta = \underset{\theta \in \Theta} {argmax} L(\theta)

l ′ ( θ ) = 0 l'(\theta)=0

Wald检验+偏置信区间也可以构造最大似然估计 θ ^ \hat\theta ，95%的Wald类型区间满足：

θ ^ ± 1.96 s e ( θ ^ ) \hat \theta ±1.96 se(\hat \theta)

## 贝叶斯法

π ( θ ∣ D ) = p ( θ ∣ D ) π ( θ ) p ( D ) ∝ p ( D ∣ θ ) π ( θ ) \pi(\theta \mid D) = \frac{p(\theta \mid D)\pi(\theta)}{p(D)} \propto p(D \mid \theta)\pi(\theta)

π ( θ ∣ D ) ∝ π ( θ ) ∏ n = 1 N BivPoisson ( λ 1 n , λ 2 n , λ 3 n ) \pi(\theta \mid D) \propto \pi(\theta) \prod_{n=1}^N \text{BivPoisson}(\lambda_{1n},\lambda_{2n},\lambda_{3n})

att t ∼ N ( μ a t t , σ a t t ) def t ∼ N ( μ d e f , σ d e f ) , t = 1 , … , T \begin{aligned} &\text{att}_t∼N(\mu_{att},\sigma_{att})\\ &\text{def}_t∼N(\mu_{def},\sigma_{def}), t= 1,\dots,T \end{aligned}

## 用模型预测8强

12月6日更新

2:4 克罗地亚胜（点球）

12月7日更新

12月7日的比赛，模型预测西班牙有56.2%的胜率，结果120分钟踢平，点球西班牙0:3输给摩洛哥，算是爆了个小冷门。葡萄牙的比赛结果跟预期一致，葡萄牙胜。只是没有料到会是6:1的大比分。

12月10日更新

4:3 阿根廷胜（点球）

12月11日更新

1:2 法国胜

12月14日更新

12月15日更新

## 冠军预测

∗ ∗ ∗ \ast \ast \ast

• 15
点赞
• 16
收藏
觉得还不错? 一键收藏
• 打赏
• 42
评论
06-19 1万+

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

JarodYv

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。