中医药天池大数据竞赛——中医文献问题生成挑战(三)

前两篇主要写了数据预处理(https://blog.csdn.net/jasmine0244/article/details/108888236)和模型搭建(https://blog.csdn.net/jasmine0244/article/details/108902127),接下来就是K折模型验证评估。

官方的评估标准是以ROUGE-L(https://www.aclweb.org/anthology/W04-1013.pdf)为准。我在github上找到了一个免安装的版本,rouge4chinese(https://github.com/hpzhao/nlp-metrics)。

首先我们将K折的验证集也输出来,方便和验证集的预测结果进行评估

from tqdm import tqdm
k_folds = 5
for mode in range(k_folds): 
    valid_data = [data[j] for i, j in enumerate(random_order) if i % k_folds == mode]
    print(len(valid_data))
    with open("ref_{0}".format(mode), 'w', encoding='utf-8&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值