第5章 Python 数字图像处理(DIP) - 图像复原与重建4 - 指数噪声

标题

指数噪声

指数噪声的PDF为
P ( z ) = { a e − a z , z ≥ 0 0 , z < 0 (5.10) P(z) = \begin{cases} ae^{-az}, & z\geq 0 \\ 0, & z < 0 \end{cases} \tag{5.10} P(z)={aeaz,0,z0z<0(5.10)

均值和方差为
z ˉ = 1 a (5.11) \bar{z} = \frac{1}{a} \tag{5.11} zˉ=a1(5.11)
σ 2 = 1 a 2 (5.12) \sigma^2 = \frac{1}{a^2} \tag{5.12} σ2=a21(5.12)

def exponential_pdf(z, a=1):
    """
    create exponential PDF, math $$P(z) = \begin{cases} ae^{-az}, & z\geq 0 \\ 0, & z < 0 \end{cases}$$
    param: z: input grayscale value of iamge
    param: a: float,
    """
    exp = a * np.exp(-a * z)
    exp = np.where(z >= 0, exp, 0)
    
    return exp

更正下面代码,如果之前已经复制的,也请更正

def add_exponent_noise(img, scale=1.0):
    """
    add gamma noise for image
    param: img: input image, dtype=uint8
    param: mean: noise mean
    param: sigma: noise sigma
    return: image_out: image with gamma noise
    """
    # image = np.array(img/255, dtype=float) # 这是有错误的,将得不到正确的结果,修改如下
	image = np.array(img, dtype=float)
    noise = np.random.exponential(scale=scale, size=image.shape)
      
    image_out = image + noise
    image_out = np.uint8(normalize(image_out)*255)
    
    return image_out
# 指数噪声
a = 0.5
z = np.linspace(0, 10, 200)

z_ = 1 / a
sigma = 1 / a**2

print(f"z_ -> {z_}, sigma -> {sigma}")

exponet =  exponential_pdf(z, a=a)

plt.figure(figsize=(9, 6))
plt.plot(z, exponet)
plt.show()
z_ -> 2.0, sigma -> 4.0

在这里插入图片描述

# 指数噪声
img_ori = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH05/Fig0503 (original_pattern).tif", 0)
# img_ori = np.ones((512, 512)) * 128
img_exponent = add_exponent_noise(img_ori, scale=20)

plt.figure(figsize=(9, 6))
plt.subplot(121), plt.imshow(img_ori, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_exponent, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])

plt.tight_layout()
plt.show()

在这里插入图片描述

hist, bins = np.histogram(img_exponent.flatten(), bins=255, range=[0, 255], density=True)
bar = plt.bar(bins[:-1], hist[:])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jasneik

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值