64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

利用动态规划

解法一:时间复杂度和空间赋值为O(m*n)

class Solution {
public:
    int minPathSum(vector<vector<int>> &grid) {
        int m = grid.size(), n = grid[0].size();
 
        vector<vector<int> > dp(m,vector<int>(n));
            
        for(int i = 0; i < m; ++i){
            for(int j = 0;j < n; ++j){
                if(i == 0){
                    if(j == 0){
                        dp[i][j] = grid[i][j];
                    }else{
                        dp[i][j] = dp[i][j-1] + grid[i][j];
                    }
                }else if(j == 0){
                    dp[i][j] = dp[i-1][j] + grid[i][j];
                }else{
                    dp[i][j] = min(dp[i][j-1],dp[i-1][j]) + grid[i][j]; 
                }
            }
        }
          return dp[m-1][n-1];
    }
};
解法2  空间优化--空间复杂度为O(n)

dp[i][j]只与dp[i-1][j],dp[i][j-1]有关,对每个正向循环j,之前的dp[j-1]是“新的”,dp[j]还是旧的

dp[j]=min(dp[j-1],dp[j])+a[i][j]更新

class Solution {
public:
    int minPathSum(vector<vector<int>> &grid) {
        int m = grid.size(), n = grid[0].size();
        
        vector<int> dp(n);
            
        for(int i = 0; i < m; ++i){
            for(int j = 0;j < n; ++j){
                if(i == 0){
                    if(j == 0){
                        dp[j] = grid[i][j];
                    }else{
                        dp[j] = dp[j-1] + grid[i][j];
                    }
                }else if(j == 0){
                    dp[j] = dp[j] + grid[i][j];
                }else{
                    dp[j] = min(dp[j-1],dp[j]) + grid[i][j]; 
                }
            }
        }
          return dp[n-1];
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值