win7 64位下安装hadoop的eclipse插件并编写运行WordCount程序
环境:
win7 64位
hadoop-2.6.0
步骤:
1、下载hadoop-eclipse-plugin-2.6.0.jar包
2、把hadoop-eclipse-plugin-2.6.0.jar放到eclipse安装目录下的plugins目录下
3、打开eclipse发现左边多出来一个DFS Locations
4、在win7上解压hadoop-2.6.0。
5、下载hadoop.dll、winutils.exe等文件。
根据你的hadoop版本下载相应的文件,我们用的是2.6所以要求支持hadoop2.6的(低版本的hadoop.dll会报错),然后拷贝下载文件到hadoop的bin目录,如果有已存在的文件直接跳过就行,不用覆盖原来的bin目录下的文件
说明:这一步非常重要,不然你运行项目时会报各种异常
6、设置Window->Prefrences->Hadoop Map/Reduce的installation directory为你解压的hadoop目录。
7、显示Map/Reduce选项卡。
选择Window->Open Perspective->Other->Map/Reduce
8、创建hdfs连接。
右键单击Map/Reduce Locations选项卡 选择新建
9、弹出配置
这里面的Host、Port分别为你在mapred-site.xml、core-site.xml中配置的地址及端口
10、查看是否连接成功,是否可以看到hdfs上的文件
11、创建mapreduce程序
12、下一步 填写项目名称OK。
13、如果自动导入了hadoop的jar包建议全部删除(因为hadoop-2.6.0不同目录下会有好多相同的jar包)都导进去就有重复的了。
14、搜索hadoop-2.6.0目录下所有的jar包拷贝到自己新建的一个目录,有重复的略过,然后把所有的jar包导入项目中。
15、编写wordcount程序新建一个class,内容如下:
package hdWordCount;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: WordCount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
16、右键run as 选择配置 ,配置参数
17、右键run as ,run on hadoop 完成 ,查看 输出目录文件内容
18、完成!