Tylor Expansion Example
Tylor Expansion is a powerful tool to deal with limits. Some examples are showed below.
Prerequisite
See more about how to calculate derivative at this link and differential rules at this link.
Definition[1]
limx→af(x)=f(a)0!(x−a)0+f′(a)1!(x−a)1+f′′(a)2!(x−a)2+⋯+f(n)(a)n!(x−a)n=∑n=0∞f(n)(a)n!(x−a)n
When a = 0, the formula is showed below.
limx→af(x)=f(a)0!x0+f′(a)1!x1+f′′(a)2!x2+⋯+f(n)(a)n!xn=∑n=0∞f(n)(a)n!xn
Examples
1. Example 1
f(x)=ex
limx→0f(x)=f(a)0!x0+f′(a)1!x1+f′′(a)2!x2+⋯+f(n)(a)n!xn=e00!x0+e01!x1+e02!x2+⋯+e0n!xn=x00!+x11!+x22!+⋯+xnn!
1. Example 2
f(x)=sinx
limx→0f(x)=f(a)0!x0+f′(a)1!x1+f′′(a)2!x2+⋯+f(n)(a)n!xn=sin00!x0+cos01!x1+−sin02!x2+⋯=00!+11!x1+02!+⋯+xnn!+⋯=x11!−x33!+x55!−x77!+⋯