机器学习-数学基础
文章平均质量分 71
zhichengMLE
Machine Learning
展开
-
2. 数据分割
1. 为什么是数据分割通过把数据集 (Dataset) 中的数据内容分割成训练集 (Train Set) 和测试集 (Test Set),用训练集来训练模型,再通过测试集来测试模型的性能,如果测试通过,才会考虑投放在实际应用中。2. 数据分割的注意事项2.1. 保证数据的随机性如果数据分割是按照一定的规律进行的话,那么训练出来的模型也会被“模式化”,一旦遇到特殊值,就会判断出错。2.2. 保证训练集原创 2017-09-14 16:42:12 · 1200 阅读 · 0 评论 -
Tylor Expansion Example
Tylor Expansion Example Tylor Expansion is a powerful tool to deal with limits. Some examples are showed below.PrerequisiteSee more about how to calculate derivative at this link and differential ru原创 2017-11-06 15:57:51 · 665 阅读 · 0 评论 -
Practical Derivatives
Practical Derivatives1. Power FunctionGiven : f(x)=xa(a∈Q)f \left( x \right) = x^a \text(a \in Q)Proofs : f′(x)=a⋅xa−1f'\left( x \right) = a \cdot x^{a-1} Deductionf′(x)=limΔx→0f(x+Δx)−f(x)Δx=limΔx→原创 2017-11-06 15:57:18 · 611 阅读 · 0 评论 -
What is a one-sided limits?
What is a one-sided limits?IntroductionOne-sided Limits and Two-sided LimitsPeople are familiar with two sided limits, shown below.limx−>af(x)=L(1)\lim\limits_{x->a} f(x) = L\tag{$1$}But here, we ar原创 2017-11-06 15:56:34 · 976 阅读 · 0 评论 -
Function and Limit
Function and Limit1. Function1) What is a Function?In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exac原创 2017-11-06 15:55:53 · 874 阅读 · 0 评论 -
Differentiation Rules
Differentiation Rules1. The Sum RuleIn calculus, the sum rule in differentiation is a method of finding the derivative of a function that is the sum of two other functions for which derivatives exist.[原创 2017-11-06 15:55:16 · 1138 阅读 · 0 评论 -
tanh Function
tanh Function1. Introduction To limit all data within the range of -1 to 1. Comparing to Sigmoid Function which output range is [0,1]2. FormulaThe formula and derivative of tanh is: f(z)f′(z)=tanh(原创 2017-10-30 23:15:11 · 1013 阅读 · 0 评论 -
Mathematics - Matrix and Vector Transformation
Mathematics - Matrix and Vector TransformationMathematics - Matrix and Vector Transformation 1. When to Transform?2. How to Transform? 1) Octave Implement2) Python Implement 1. When to Transform原创 2017-10-30 23:14:52 · 771 阅读 · 0 评论 -
Sigmoid Function
Sigmoid Function1. Introduction To limit all data within the range of 0 to 1.2. Formulay=11+e−xy = \frac{1}{1+e^{-x}}3. Implementation3.1 Octave x = linspace(-10, 10 ,10000); y = zeros( size(x, 1原创 2017-10-30 23:14:13 · 797 阅读 · 0 评论 -
0.大纲
机器学习-数学基础这页博客主要是收集各个链接,做成大纲,方便自己梳理知识点,也方便别人查阅。会不定时更新。这个栏目里面用到的图片和公式如果不是原创会在下面注明出处,如有侵权,联系删除。原创 2017-09-11 19:05:28 · 629 阅读 · 0 评论 -
1. 数据预处理-数据归一化和数据规范化
数据预处理-数据归一化和数据规范化 1. 数据归一化1.1. 作用把数据映射到[0,1]的区间中把有量纲形式变成无量纲形式1.2. 算法1.2.1. 最小-最大归一化Y=X−XminXmax−XminY = \frac{X - Xmin}{Xmax - Xmin} 把X的值映射到[0, 1] 的区域中,因为必有X < Xmax,所以分子(X - Xmin) < 分母(Xmax - Xmi原创 2017-09-11 19:43:25 · 8548 阅读 · 0 评论 -
3. 线性模型性能分析--混淆矩阵(Confusion Matrix)
1. 什么是混淆矩阵 在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类像比较计算的[1]。通过分析混淆矩阵,我们可以得到: * TPR (True Posi原创 2017-09-14 17:15:20 · 4118 阅读 · 0 评论 -
Concave and Convex Function
Concave and Convex FunctionWhat is Concave Function?Concave function is a function where the line segement between any two points of the function lies below or on the graph.[1]Mathematically, as for co原创 2017-11-30 21:33:47 · 3379 阅读 · 0 评论