YOLOv5改进 | 卷积篇 | 通过RFAConv重塑空间注意力(深度学习的前沿突破)

本文介绍了RFAConv,一种用于YOLOv5的新型空间注意力机制,旨在提升卷积神经网络的性能。RFAConv通过关注感受野空间特征,解决参数共享问题,并提高大尺寸卷积核的效率,从而改善目标检测的精度和速度。文章详细解析了RFAConv的结构,提供了核心代码和修改教程,以及不同位置添加RFAConv的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍

本文给大家带来的改进机制是RFAConv,全称为Receptive-Field Attention Convolution是一种全新的空间注意力机制。与传统的空间注意力方法相比,RFAConv能够更有效地处理图像中的细节和复杂模式(适用于所有的检测对象都有一定的提点)。这不仅让YOLOv5在识别和定位目标时更加精准,还大幅提升了处理速度和效率。本文章深入会探讨RFAConv如何在YOLOv5中发挥作用,以及它是如何改进在我们的YOLOv5中的。我将通过案例的角度来带大家分析其有效性(结果训练结果对比图)

适用检测目标:亲测所有的目标检测均有一定的提点

推荐指数:⭐⭐⭐⭐⭐

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

 一、本文介绍

二、RFAConv结构讲解

2.1、RAFCAonv主要思想

2.2、感受野空间特征

2.3、解决参数共享问题

2.4、提高大尺寸卷积核的效率

三、RFAConv核心代码

四、手把手教你添加RFAConv和C3f_RFAConv模块

 4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 RFAConv的yaml文件

4.2.1 RFAConv的yaml文件一

4.2.2 RFAConv的yaml文件二

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值