【RT-DETR有效改进】 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)

本文深入探讨了RevColV1网络结构,这是一种可逆列网络设计,适用于大规模数据集的目标检测任务。核心原理包括可逆连接设计,保持信息完整,以及特征解耦,增强特征表达。文章提供了核心代码修改指南,帮助读者实践应用到RT-DETR中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👑欢迎大家订阅本专栏,一起学习RT-DETR👑   

一、本文介绍

本文给大家带来的是主干网络RevColV1,翻译过来就是可逆列网络去发表于ICLR2022,其是一种新型的神经网络设计(和以前的网络结构的传播方式不太一样),由多个子网络(列)通过多级可逆连接组成。这种设计允许在前向传播过程中特征解耦,保持总信息无压缩或丢弃。其非常适合数据集庞大的目标检测任务,数据集数量越多其效果性能越好,亲测在包含1000个图片的数据集上其涨点效果就非常明显了,大家可以多动手尝试,其RevColV2的论文同时已经发布如果代码开源我也会第一时间给大家上传。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR  

目录

一、本文介绍

二、RevColV1的框架原理

2.1 RevColV1的基本原理

2.1.1 可逆连接设计

2.1.2 特征解耦 

2.2 RevColV1的表现

三、RevColV1的核心代码

四、手把手教你添加RevColV1网络结构

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 必备修改!

4.10 RT-DETR不能打印计算量问题的解决

4.11 可选修改

五、RevColV1的yaml文件

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值