YOLOv10改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点(二次创新C2f和C2fCIB机制)

 一、本文介绍

本文给大家带来的改进机制是iAFF(迭代注意力特征融合),其主要思想是通过改善特征融合过程来提高检测精度。传统的特征融合方法如加法或串联简单,未考虑到特定对象的融合适用性。iAFF通过引入多尺度通道注意力模块(我个人觉得这个改进机制就算融合了注意力机制的求和操作)更好地整合不同尺度和语义不一致的特征。该方法属于细节上的改进,并不影响任何其它的模块,非常适合大家进行融合改进,单独使用也是有一定的涨点效果,本文内容包含二次创新C2f和C2fCIB机制均为独家创新。

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备  


目录

 一、本文介绍

二、iAFF的基本框架原理

三、iAFF的核心代码

四、手把手教你添加iAFF

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、iAFF的yaml文件和运行记录

5.1 C2fiAFF的yaml文件1

5.2 C2fCIBiAFF的yaml文件2

5.3 C2fiAFF + C2fCIBiAFF

5.4 训练代码 

### YOLOv9 改进与融合策略特征分析 #### 一、Neck部分的改进——利用ASF-YOLO优化特征融合网络 在YOLOv9中,为了提升模型性能,提出了多种针对Neck结构的改进方案。其中一种重要方式是采用ASF-YOLO来增强特征融合的效果[^1]。 - ASF-YOLO通过自适应空间特征聚合机制实现了更高效的跨层信息交互。具体而言,在传统FPN基础上加入了可学习的空间权重参数,使得每一层提取出来的特征图能够依据实际场景需求动态调整贡献度。 ```python def adaptive_spatial_fusion(features, weights): """ 实现自适应空间特征聚合 :param features: 输入特征列表 :param weights: 可训练的空间权重向量 :return: 融合后的单张特征图 """ fused_feature = sum([f * w for f, w in zip(features, weights)]) return fused_feature ``` 这种设计不仅有助于捕捉更加丰富的上下文关系,而且可以有效缓解因固定比例混合而导致的信息丢失问题。 #### 二、细节层面的创新——迭代注意力特征融合(AFF) 除了整体架构上的变革外,对于局部处理环节也有着深入探索。特别是AFF机制的应用,它旨在解决标准卷积操作中存在的局限性,即无法充分考虑目标物体大小差异所带来的影响[^2]。 - AFF核心在于构建一个多尺度通道注意力建模单元(iAFF),该组件能够在保持原有计算复杂度不变的前提下显著加强了对不同尺寸实例敏感性的表达能力。这得益于内部集成了专门用于评估各层次间关联强度的学习模块,从而实现精准定位并突出显示感兴趣区域内的关键属性。 ```python class IterativeAttentionFusion(nn.Module): def __init__(self, channels_list): super().__init__() self.attention_modules = nn.ModuleList([ ChannelAttention(channels) for channels in channels_list ]) def forward(self, multi_scale_features): attended_features = [] for feature, attention_module in zip(multi_scale_features, self.attention_modules): weighted_feature = feature * attention_module(feature) attended_features.append(weighted_feature) final_output = torch.cat(attended_features, dim=1) return final_output ``` 上述两种技术手段共同作用下,极大地促进了YOLOv9在网络深度增加的同时维持甚至超越先前版本的速度优势;更重要的是大幅提高了小目标识别率以及边界框回归准确性等方面的表现水平。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值