无向图染色
给一个无向图染色,可以填红黑两种颜色,必须保证相邻两个节点不能同时为红色,输出有多少种不同的染色方案?
输入描述
第—行输入M(图中节点数)N(边数)
后续N行格式为:V1V2表示一个V1到V2的边。
数据范围: 1<=M<= 15,0 <=N<=M *3,不能保证所有节点都是连通的。
输出描述
输出一个数字表示染色方案的个数。
思路
对每个节点可能的染色进行搜索。对每个未染色的节点分两种情况:当染黑色的情况下,不对其他节点产生影响;当染红色的情况下,要查找这个节点连接的所有边,找到相邻节点并直接规定为黑色。每当所有节点被染色完成就说明找到了一种结果,遍历所有可能后结束。
public static class Side {
int from;
int to;
public Side(int from, int to) {
this.from = from;
this.to = to;
}
}
private static List<Side> map = new ArrayList<>();
private static int[] asc = null;
private static int num = 0;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();
int n = sc.nextInt();
for (int i = 0; i < n; i++) {
int u = sc.nextInt();
int v = sc.nextInt();
map.add(new Side(u - 1, v - 1));
}
asc = new int[m];
dfs(0);
System.out.println(num);
}
//0未染色,1黑色,2红色
static void dfs(int v) {
if (v == asc.length) {
num++;
return;
}
if (asc[v] == 0) {
asc[v] = 1;
dfs(v + 1);
asc[v] = 2;
for (Side side : map) {
if (side.from == v) {
asc[side.to] = 1;
}
if (side.to == v) {
asc[side.from] = 1;
}
}
dfs(v + 1);
} else {
dfs(v + 1);
}
asc[v] = 0;
}