无向图染色

无向图染色

给一个无向图染色,可以填红黑两种颜色,必须保证相邻两个节点不能同时为红色,输出有多少种不同的染色方案?

输入描述

第—行输入M(图中节点数)N(边数)
后续N行格式为:V1V2表示一个V1到V2的边。
数据范围: 1<=M<= 15,0 <=N<=M *3,不能保证所有节点都是连通的。

输出描述

输出一个数字表示染色方案的个数。

思路

对每个节点可能的染色进行搜索。对每个未染色的节点分两种情况:当染黑色的情况下,不对其他节点产生影响;当染红色的情况下,要查找这个节点连接的所有边,找到相邻节点并直接规定为黑色。每当所有节点被染色完成就说明找到了一种结果,遍历所有可能后结束。

    public static class Side {
        int from;
        int to;

        public Side(int from, int to) {
            this.from = from;
            this.to = to;
        }
    }

    private static List<Side> map = new ArrayList<>();

    private static int[] asc = null;

    private static int num = 0;

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int m = sc.nextInt();
        int n = sc.nextInt();


        for (int i = 0; i < n; i++) {
            int u = sc.nextInt();
            int v = sc.nextInt();
            map.add(new Side(u - 1, v - 1));
        }
        asc = new int[m];
        dfs(0);


        System.out.println(num);
    }

    //0未染色,1黑色,2红色
    static void dfs(int v) {

        if (v == asc.length) {
            num++;
            return;
        }
        if (asc[v] == 0) {
            asc[v] = 1;
            dfs(v + 1);
            asc[v] = 2;
            for (Side side : map) {
                if (side.from == v) {
                    asc[side.to] = 1;
                }
                if (side.to == v) {
                    asc[side.from] = 1;
                }
            }
            dfs(v + 1);
        } else {
            dfs(v + 1);
        }
        asc[v] = 0;


    }

华为OD无向图染色算法C实现,是一种用C语言编写的算法,用于在无向图中对每个节点进行染色操作。该算法是基于图论中的染色问题设计的,可以使用多种方法来实现,例如DFS、BFS等。 在使用该算法前,需要先确定好无向图的节点数和每对节点之间的边。具体操作步骤如下: 1. 初始化节点颜色。根据需要设置节点颜色为黑色、白色等。可以使用数组来存储每个节点的颜色信息。 2. 遍历每个节点。对于每个节点,如果该节点未被染色,则调用染色函数进行染色。 3. 染色函数。该函数用于对当前节点进行染色操作,可以使用DFS或BFS等方法实现。具体内容包括: (1)从当前节点开始,遍历其所有邻居节点。 (2)如果邻居节点未被染色,则将其染上相反颜色。 (3)如果邻居节点已被染色,检查其颜色是否跟当前节点相同。如果相同,则说明无法完成染色操作,算法失败;如果不相同,则继续遍历其未染色邻居节点。 (4)如果遍历完所有邻居节点后仍未完成染色,则返回失败信息。 4. 返回结果。如果所有节点都已被染色,则整个算法成功完成。如果存在未被染色的节点,则算法失败。 华为OD无向图染色算法C实现中,需要注意算法的时间和空间复杂度。同时,还需要注意特殊情况的处理,例如图中存在孤立节点的情况。通过合理的算法设计和实现,可以保证算法的效率和正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值