94、计算机辅助干预系统集成:软件设计与实践

计算机辅助干预系统集成:软件设计与实践

1. 引言

计算机辅助干预(CAI)系统通常通过集成多种不同设备(如成像、机器人、可视化和触觉设备)来解决临床问题。因此,考虑系统集成领域的流程、工具和最佳实践至关重要。本文聚焦于CAI系统集成的软件方面,涵盖设计考量、中间件、应用框架、开发流程以及集成系统示例等内容。

2. 系统设计

2.1 编程语言和平台

  • 编程语言选择 :多数CAI系统需与物理世界交互,要求一定的实时性能,常选用编译型语言(如C++)以实现更快的执行速度。但编译型语言不利于交互式调试,每次修改都需重新编译,此时解释型语言(如Python)更具吸引力。许多系统会混合使用多种语言,如用C++编写性能关键模块,用Python脚本将这些模块“粘合”在一起,3D Slicer就是这样的例子。
  • 平台选择 :平台选择不仅涉及操作系统,还可能包括开发环境或框架。常见的操作系统有Windows、Linux、OS X,移动操作系统(如iOS和Android)也越来越普遍。开发环境(如Matlab、Qt和3D Slicer)可封装底层操作系统,提供一定的可移植性。某些平台(如ROS)可能需要特定的操作系统支持。编程语言和平台的选择通常基于开发者的熟悉程度、现有软件包的可用性、性能考量以及特定硬件组件驱动的可用性。

2.2 设计方法

  • 面向对象设计 :基本软件元素是类的实例对象,数据交换通过调用类中的方法实现。
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值