95、计算机辅助干预研究软件系统集成与开发

计算机辅助干预研究软件系统集成与开发

1. 研究软件与商业软件的许可差异

在软件开发中,研究软件和商业软件对开源协议的使用存在显著差异。商业软件通常禁止使用GPL(通用公共许可证)软件。而研究软件由于不进行公开分发,可使用GPL软件且无需公开所有源代码。然而,即便在研究软件中,依赖GPL也具有较大限制,因为无法提前预知软件后续的用途。相比之下,基于BSD、MIT或Apache等非限制性许可的替代软件库进行开发,风险更低且更具前瞻性。

2. 现有应用框架概述

2.1 现状与问题

过去20年里,数百个计算机辅助干预(CAI)和医学图像计算应用被开发出来,许多旨在成为通用框架。但大部分软件因主要开发者离开或项目资金停止而被弃用,其余则规模较小,仅由少数兼职爱好者维持。因此,找到满足研究应用框架重要要求的框架并非易事。

2.2 部分被弃用或活跃度低的框架

一些早期投入较大的应用框架近年来被弃用或开发活动降至极低水平,例如IGSTK、deVide、Gimias、medInria和CamiTK。由于用户和开发者数量极少,它们在竞争激烈的领域中的生存能力存疑,不适合作为新项目的基础。

2.3 不适合作为研究平台的框架

  • 闭源软件 :依赖闭源软件会严重限制研究结果的可重复性,需要购买昂贵许可证的软件平台会降低基于其开发的应用的可用性和灵活性。像MevisLab、Amira - Avizo、OsiriX、Simpleware、Matlab/Simulink或Labview等商业软件框架并非理想的研究软件平台。
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值