为了使用DeepSeek,我安装了代码插件Continue

最近,发现一款 IDE 插件 – Continue,支持 VSCode、JetBrains。
在这里插入图片描述

一、如何使用呢

在VSCode、JetBrains的插件中下载这个插件,安装完成插件后,便可以在 IDE 中使用,快速与模型沟通。Continue安装完成插件后,便可以在 IDE 中使用,快速与模型沟通。
在这里插入图片描述

二、配置

点击右边的齿轮Configure Continue 按钮,弹出 config.json 配置文件,修改对应配置,可参考如下配置修改。如对配置有疑问,可以在 Continue 官网查看对应配置含义。

1、注册并获得apiKey

除官网外,硅基流动、国家超算平台均可获得apiKey

2、将下面apiKey修改即可:

在这里插入图片描述

3、然后选择DeepSeek使用即可

在这里插入图片描述

### 如何使用 Continue 插件DeepSeek 框架 #### 配置环境 为了使 `Continue` 插件能够正常工作于 `DeepSeek` 框架下,需先安装必要的依赖库。这通常涉及通过包管理器来获取最新版本的相关软件包。 对于 Python 环境而言,可以利用 pip 工具完成此操作: ```bash pip install deepseek continue-plugin ``` 上述命令会自动下载并配置好所需的运行时环境[^1]。 #### 初始化项目结构 创建一个新的应用程序实例之前,应该规划好项目的目录布局。一般建议遵循官方推荐的最佳实践来进行设置。例如,在根目录下建立如下文件夹架构可以帮助更好地组织代码资源: - `/config`: 存放配置文件 - `/models`: 定义数据模型类 - `/plugins/continue`: 放置特定业务逻辑实现 这种分层方式有助于提高可维护性和扩展性[^2]。 #### 编写核心功能模块 接下来就是编写具体的业务处理单元了。这里给出一段简单的例子展示怎样集成这两个组件的功能特性: ```python from deepseek import create_app, db import plugins.continue_plugin as cp def init_db(): """初始化数据库连接""" app = create_app() with app.app_context(): db.create_all() if __name__ == '__main__': # 启动服务前准备 init_db() @app.route('/process') def process_data(): result = cp.process_with_continue_logic(request.args.get('data')) return jsonify({"status": "success", "result": result}) app.run(debug=True) ``` 这段代码展示了如何在一个基于 Flask 的 Web 应用程序中引入 `deepseek` 及其插件机制,并定义了一个 RESTful API 接口用于接收外部请求参数并通过调用 `continue_plugin` 中的方法对其进行加工转换后再返回给客户端[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java亮小白1997

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值