
论文阅读
文章平均质量分 74
早起多学习
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Grasp Pose Detection with Affordance-based Task Constraint Learning in Single-view Point Clouds
1.解决的问题Knowing how to grasp is generally more challenging than what to grasp for a robot.从单视角点云规划抓取的挑战性在于模型需要对RGB-D感知的不精确和不完整进行补偿。GPD方法在物体CAD模型未知的情况下直接从RGB-D传感信息中检测3DoF或6DoF抓取位姿,取得了很好的效果,而且在未知物体抓取上有很好的泛化性。与GPD抓取任意(any)物体不同的是,本文聚焦于物体操作任务中任务导向(task-specif原创 2021-08-22 21:57:08 · 947 阅读 · 2 评论 -
Grasp Pose Detection in Point Clouds
解决的问题论文提出了基于部分点云的抓取位姿计算方法GPD(Grasp Pose Detection)。该方法首先对点云体素化以实现压缩和去噪等预处理,然后获得感兴趣区域(Region of Interest, ROI),这个ROI 可以包含多个物体,或者是物体位置的近似估计。之后在 ROI 区域均匀随机采样 N 个抓取点,以该点所在的曲面法向作为候选抓取的朝向,并通过对该抓取进行旋转和平移扩充候选抓取的数量,用于寻找满足力闭合抓取的机器手 6DOF 位姿。最后每个抓取候选经过一个四层的CNN 分类器原创 2021-08-20 21:09:53 · 1795 阅读 · 1 评论 -
PointNetGPD: Detecting Grasp Configurations from Point Sets
解决的问题提出了一个端到端的抓取评估模型,能够从3D点云中输出机器人抓取配置。和基于手工设计深度特征和CNN的抓取评估方法相比,提出的PointNetGPD模型具有轻量化、能直接处理定位了夹持器配置的3D点云的特点。即使点云非常稀疏,也能很好地捕捉接触区域的几何结构。先前工作大多依赖2D输入或2.5D输入,很少考虑3D几何信息。论文的主要贡献:直接对3D点云进行集合分析评估抓取质量,和以前的基于CNN的方法相比,文章所提方法能更好地利用深度图像的三维信息,不需要手工设计的特征,即使点云稀疏也能够原创 2021-08-20 21:02:44 · 1698 阅读 · 0 评论 -
Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning
解决的问题原创 2021-08-13 17:16:18 · 1056 阅读 · 0 评论 -
Learning to See before Learning to Act: Visual Pre-training for Manipulation
1.解决的问题这篇文章采用迁移学习,将学习到的知识从一个被动的视觉任务(数据分布独立于智能体的决策)迁移到主动的机器人任务(数据分布依赖于智能体的决策)。在视觉任务上预训练能显著提高学习操作物体时的泛化性和采样效率。迁移模型的哪部分能带来提升呢?标准视觉模型的输出与操作任务中的affordance maps高度相关,直接从视觉网络迁移模型参数到affordance预测网络,使用少量经验训练微调affordance模型就可以达到更好的效果。作者发现直接从ImageNet上预训练的模型迁移潜在特征表示原创 2021-08-13 17:03:38 · 251 阅读 · 0 评论