hive查询优化的主要目的是提升效率,下面总结了查询中经常使用的优化点:
1. 少用count(distinct )
建议用group by 代替 distinct 。原因为count(distinct)逻辑只会有一个reducer来处理,即使设定了reduce task个数,set mapred.reduce.tasks=100也一样,所以很容易导致数据倾斜。坊间传闻,在面对大数据量时很多大厂都“明令禁止使用distinct”。
如sql语句:select count(distinct uid) from users
建议改成: select count(*) from (select uid from testmac group by uid) t
2. 谓词下推
Predicate Pushdown,PPD,白话的意思就是就是将SQL语句中的where谓词逻辑都尽可能提前执行,减少下游处理的数据量。例如以下HiveSQL语句:
select a.uid,a.event_type,b.topic_id,b.title from calendar_record_log a left outer join ( select uid,topic_id,title from forum_topic where pt_date = 20190224 and length(content) >= 100 ) b on a.uid = b.uid where a.pt_date = 20190224 and status = 0;
对forum_topic做过滤的where语句写在子查询内部,而不是外部。
3. 用sort by代替order by
order by : 对查询结果进行全局排序消耗时间长

本文总结了Hive查询优化的关键点,包括避免使用count(distinct),利用谓词下推,用sort by代替order by,优化join操作,以及MapReduce阶段的调整。通过实例展示了如何减少数据倾斜,提高查询效率,以及如何根据业务需求调整map和reduce任务的数量。
最低0.47元/天 解锁文章
1615

被折叠的 条评论
为什么被折叠?



