简单方法查找邻接矩阵有向图的有序集合

本文介绍了一种简单的算法来检查有向图的邻接矩阵是否存在环。通过统计节点出度及前序节点,逐步将出度为零的节点加入访问集合,直至遍历所有节点。如果已访问节点数等于节点总数,则图无环;否则存在环。文中还提及了代码实现和性能优化策略,并给出了相关测试用例。
摘要由CSDN通过智能技术生成

简单方法查找邻接矩阵有向图的有序集合

求解思路

1.统计所有节点的出度及其前序节点,初始化一个空的访问集合;
2.将出度为零的节点放入访问集合,并将其前序节点的出度数减1;
3.重复第2步骤,直到所有节点从头到尾完整遍历一遍;
4.判断已访问节点个数是否等于节点个数,是则有向图无环,否则有向图有环。

实现代码

方法一:

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class AlgorithmUtil {
   
    /**
     * 查找有向图的有序集合,如果有环返回空数组
     * 根据每个节点的入度和出度计算,把出度为零的依次去掉并更改其前序节点的出度个数,统计最后访问过的节点
     */
    public static int[] findSequence(int[][] graph) {
   
        int nodeNum = graph.length;
        // 记录每个有入度的节点,及其所有的前序节点
        Map<Integer, List<Integer>> inEdge = new HashMap<>(nodeNum);
        // 记录每个节点的出度个数
        int[] outEdgeNum = new int[nodeNum];
        // 初始化数据
        for (int i = 0; i < nodeNum; i++) {
   
            for (int j = 0; j < nodeNum; j++) {
   
                if (graph[i][j] != Integer.MAX_VALUE) {
   
                    outEdgeNum[i]++;
                    if (inEdge.get(j) == null) {
   
                        List<Integer> list = new ArrayList<>();
                        list.add(i);
                        inEdge.put(j, list);
                    } else {
   
                        inEdge.get(j).add(i);
                    }
                }
            }
        }

        // 已访问的节点个数
        List<Integer> visitedList = new ArrayList<>(nodeNum);
        // 循环遍历所有节点的出度
        while (visitedList.size() < nodeNum) {
   
            for (int i = 0; i < nodeNum; i++) {
   
                if (outEdgeNum[i] == 0 && !visitedList.contains(i)) {
   
                    visitedList.add(i);
                    for 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值