求解思路
1.统计所有节点的出度及其前序节点,初始化一个空的访问集合;
2.将出度为零的节点放入访问集合,并将其前序节点的出度数减1;
3.重复第2步骤,直到所有节点从头到尾完整遍历一遍;
4.判断已访问节点个数是否等于节点个数,是则有向图无环,否则有向图有环。
实现代码
方法一:
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
public class AlgorithmUtil {
/**
* 查找有向图的有序集合,如果有环返回空数组
* 根据每个节点的入度和出度计算,把出度为零的依次去掉并更改其前序节点的出度个数,统计最后访问过的节点
*/
public static int[] findSequence(int[][] graph) {
int nodeNum = graph.length;
// 记录每个有入度的节点,及其所有的前序节点
Map<Integer, List<Integer>> inEdge = new HashMap<>(nodeNum);
// 记录每个节点的出度个数
int[] outEdgeNum = new int[nodeNum];
// 初始化数据
for (int i = 0; i < nodeNum; i++) {
for (int j = 0; j < nodeNum; j++) {
if (graph[i][j] != Integer.MAX_VALUE) {
outEdgeNum[i]++;
if (inEdge.get(j) == null) {
List<Integer> list = new ArrayList<>();
list.add(i);
inEdge.put(j, list);
} else {
inEdge.get(j).add(i);
}
}
}
}
// 已访问的节点个数
List<Integer> visitedList = new ArrayList<>(nodeNum);
// 循环遍历所有节点的出度
while (visitedList.size() < nodeNum) {
for (int i = 0; i < nodeNum; i++) {
if (outEdgeNum[i] == 0 && !visitedList.contains(i)) {
visitedList.add(i);
for