BST二分搜索树/二分排序树

BST定义

public class BST<E extends  Comparable<E>>{
    private class Node {
        public E e;
        public Node left, right;

        public Node(E e) {
            this.e = e;
            this.left = null;
            this.right = null;
        }
    }

与链表类似,链表有一个next 指向下一个节点 。bst有两个节点,分别指向左右两个孩子节点。

注意 泛型类定义如果用到compareT方法需要继承接口,写法上,否则报错。

add()方法:向二叉树中添加元素

 public void add(E e) {
        if (root == null) {
            root = new Node(e);
            size++;
        } else
            add(root, e);
    }

    private void add(Node node, E e) {
        if (e.equals(node.e)) {//终止条件
            return;
        } else if (e.compareTo(node.e) < 0 && node.left == null) {
            node.left = new Node(e);
            size++;
            return;
        } else if (e.compareTo(node.e) > 0 && node.right == null) {
            node.right = new Node(e);
            size++;
            return;
        }
        if (e.compareTo(node.e)<0)
            add(node.left,e);
        else add(node.right ,e);//0已经在终止条件排除



    }

add改进

   //添加新元素e
    public void add(E e) {
        root = add(root, e);
    }
//向node为根节点的树插入新元素,返回插入后树的跟根结点
    private Node add(Node node, E e) {
        if (node==null) {//终止条件
            size++;
            return new Node(e);
        }
        if (e.compareTo(node.e)<0){
             node.left = add(node.left,e);}
        //左子树如果发生变化,如左子树为空,就调用上边返回一个新的根节点
        else if(e.compareTo(node.e)>0){
            node.right=add(node.right ,e);}//如果等于0就什么都不做
        return  node;//根不变
    }

添加方法需要充分理解递归调用,size++在调用结束,如果重复元素则不会维护。

 

contains()方法:确定是否存在某个元素

//查询元素
    public  boolean contains(E e){
           return contains(root,e);
    }
    private boolean contains (Node node, E e){
        if(node==null)
            return false;
        if(e.compareTo(root.e)==0)
            return true;
        else if (e.compareTo(root.e)<0)
            return contains(root.left,e);
        else
            return contains(root.right,e);
    }
//二叉树的前序遍历
    public void preOrder(){
        preOrder(root);
    }
    //前序遍历的递归操作
    public void preOrder(Node node){
       if(node==null)//结束条件
           return;
        System.out.println(node.e);
        preOrder(node.left);
        preOrder(node.right);
    }

中序遍历:二叉排序树的由来,会按照排序后顺序操作

 //中序遍历
    public void  inOrder(){
        inOrder(root);
    }
    private void inOrder(Node node){
        if (node==null)
            return;
        inOrder(node.left);
        System.out.println(node.e);
        inOrder(node.right);
    }

后序遍历:即最后处理根节点,先处理孩子节点

//后序遍历,先处理孩子节点,再处理孩子本身,如内存处理
    public void  postOrder(){
        postOrder(root);
    }
    private void postOrder(Node node){
        if (node==null)
            return;
        inOrder(node.left);
        inOrder(node.right);
        System.out.println(node.e);
    }

 

//层序遍历  广度优先遍历
    public void levelOrder(){
        Queue<Node> q = new LinkedList<>();
        q.add(root);
        while (!q.isEmpty()){
            Node cur = q.remove();
            System.out.println(cur.e);
            if(cur.left!=null)
                q.add(cur.left);
            if(cur.right!=null)
                q.add(cur.right);
        

获得最小元素

//找到二叉树的最小值
    public E minimum() {
        if (root == null)
            throw new IllegalArgumentException("bst为空");
        return minimum(root).e;
    }

    private Node minimum(Node node) {
        if (node.left == null)
            return node;
        else return minimum(node.left);
    }

删除最小元素

 //删除最小元素所在节点,接口设计原则:如果用户没有指定删除哪个元素,则返回被删除元素
    public E removeMin() {
        E ret = minimum();
        root = removeMin(root);
        return ret;
    }

    //删除最小元素所在节点,返回删除后树的根节点
    private Node removeMin(Node node) {
        if (node.left == null) {//往左走到头了
            Node rightNode = node.right;//右节点
            node.right = null;//把右节点从根节点摘下来,自己成为根节点
            size--;//重点:理解此时的树 node为根 左子树为空 右子树摘下来等于删除根节点
            return rightNode;
        }
        node.left = removeMin(node.left);
        return node;
    }

删除任意元素

public void remove(E e) {
        root = remove(root, e);
    }

    private Node remove(Node node, E e) {//返回删除后的根节点
        if (node == null)
            return null;//结束条件
        if (e.compareTo(node.e) < 0) {
            node.left = remove(node.left, e);
            return node;
        } else if (e.compareTo(node.e) > 0) {
            node.right = remove(node.right, e);
            return node;
        } else {//e==node.e  这就是要删除的元素
            if (node.left == null) {
                Node rightNode = node.right;//右节点
                node.right = null;//把右节点从根节点摘下来,自己成为根节点
                size--;//重点:理解此时的树 node为根 左子树为空 右子树摘下来等于删除根节点
                return rightNode;
            }
            if (node.right == null) {
                Node leftNode = node.left;
                node.left = null;
                size--;
                return leftNode;
            }
            //剩下左右子树都不为空的情况
            // 步骤 找到子树中大于自己并且是最小的元素
            //用这个节点代替被删除节点
            Node successor = minimum(node.right);//右子树都大于根节点,找右里的最小
            successor.right = removeMin(node.right);//这里size--了
            successor.left = node.left;
            node.right = node.left = null;
            return successor;
        }

二叉搜索树需要对递归有更深的理解,同链表相同,node的存在是的bst天生具备递归性质,由于是非线性结构,递归算法代码会大大缩减代码量,更简洁。

但是还要注意递归存在缺点,就是对方法栈的调用,递归过多,性能较差,且容易栈溢出。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值