Tensorflow学习和应用(4)_非线性回归

本文介绍了Tensorflow中非线性回归的应用,重点讨论了激活函数在神经网络中的核心作用。激活函数通过非线性变换使神经网络能处理复杂任务,如语言翻译和图像分类,并使反向传播成为可能,从而调整权重和偏差。
摘要由CSDN通过智能技术生成

代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


# 使用numpy生成200个随机点
# 从-0.5到0.5范围均匀取200个点
# np.newaxis增加维度
# 最终成为200*1的数据
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]


noise = np.random.normal(0, 0.02, x_data.shape) #生成一些干扰项
y_data = np.square(x_data) + noise

# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])#行不确定,1列,即矩阵形式: n*1
y = tf.placeholder(tf.float32, [None, 1])#行不确定,1列,即矩阵形式: n*1

# 定义神经网络中间层

#1是输入的数据,10是输出的数据,中间层是10个神经元
Weights_L1 = tf.Variable(tf.random_normal([1, 10]))
print('Weights_L1')
print(Weights_L1)
#偏置值初始为0填充,1*10
biases_L1 = tf.Variable(tf.zeros([1, 10]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) #L1相当于中间层的输出,tanh为双曲正切函数作为激活函数,与sigmoid同理

# 定义神经网络输出层
#输入10个数据,输出1个数据
Weights_L2 = tf.Variable(tf.random_normal([10,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值