代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 使用numpy生成200个随机点
# 从-0.5到0.5范围均匀取200个点
# np.newaxis增加维度
# 最终成为200*1的数据
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
noise = np.random.normal(0, 0.02, x_data.shape) #生成一些干扰项
y_data = np.square(x_data) + noise
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])#行不确定,1列,即矩阵形式: n*1
y = tf.placeholder(tf.float32, [None, 1])#行不确定,1列,即矩阵形式: n*1
# 定义神经网络中间层
#1是输入的数据,10是输出的数据,中间层是10个神经元
Weights_L1 = tf.Variable(tf.random_normal([1, 10]))
print('Weights_L1')
print(Weights_L1)
#偏置值初始为0填充,1*10
biases_L1 = tf.Variable(tf.zeros([1, 10]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1) #L1相当于中间层的输出,tanh为双曲正切函数作为激活函数,与sigmoid同理
# 定义神经网络输出层
#输入10个数据,输出1个数据
Weights_L2 = tf.Variable(tf.random_normal([10,