深度学习之tensorflow非线性回归

python 专栏收录该内容
8 篇文章 0 订阅

解释版

import tensorflow as tf
import numpy as np
#数据可视化matplotlib.pyplot库
import matplotlib.pyplot as plt
#使用numpy生成2000个随机点---------样本(我们所拿到数据)
#numpy.linspace(start, stop, num=200)
#产生从start到stop的等差数列,np.newaxis的作用是增加一个维度。
#numpy.random.normal(loc=正态分布的均值,scale=正态分布的标准差,参数size(int 或者整数元组):输出的值赋在shape里,默认为None)
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])

#定义神经网络的中间层-----隐藏层
#tf.random_normal()函数用于从“服从指定正态分布的序列”中随机取出指定个数的值。
Weights_L1 = tf.Variable(tf.random_normal([1,10]))
#创建一个偏置,所有元素都设为零
biases_L1 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1 = tf.matmul(x,Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)

#定义神经网络输出层
#[10,1]是shape,101
Weights_L2 = tf.Variable(tf.random_normal([10,1]))
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法训练
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    #变量初始化
    sess.run(tf.global_variables_initializer())
    for _ in range(2000):
        #feed_dict = {}提供字典填充函数
        sess.run(train_step,feed_dict={x:x_data,y:y_data})
        
    #获得预测值
    prediction_value = sess.run(prediction,feed_dict={x:x_data})
    #画图
    #plt.figure()是新建一个画布
    plt.figure()
    #scatter创建散点图,x,y:表示的是大小为(n,)的数组,也就是我们即将绘制散点图的数据点
    plt.scatter(x_data,y_data)
    #plt.plot()函数用于对图形进行一些更改。lw是使线条变粗
    plt.plot(x_data,prediction_value,'r-',lw=5)
    plt.show()

plt.plot()函数解析

非解释版

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise


x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])


Weights_L1 = tf.Variable(tf.random_normal([1,10]))
biases_L1 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1 = tf.matmul(x,Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)


Weights_L2 = tf.Variable(tf.random_normal([10,1]))
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)

loss = tf.reduce_mean(tf.square(y-prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for _ in range(2000):
        sess.run(train_step,feed_dict={x:x_data,y:y_data})
    prediction_value = sess.run(prediction,feed_dict={x:x_data})
    plt.figure()
    plt.scatter(x_data,y_data)
    plt.plot(x_data,prediction_value,'r-',lw=5)
    plt.show()
  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

<p> </p><p> 数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本课程将深入浅出、全面系统地介绍了这门学科的内容。通过这门课程,同学可以了解并熟悉如下的开源工具:scikit-learn、statsmodels、TensorFlowPyspark等。 </p> <p> 本课程分为4个部分,18个章节。 </p> <p> ·             第一部分是最初的3章,主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 </p> <p> ·             第二部分是第4-7章,主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 </p> <p> ·             第三部分是接下来的8-15章,主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。 </p> <p> ·             第四部分将覆盖目前数据科学最前沿的两个领域分别是大数据和人工智能。具体来说,第11章将介绍大数据中很重要的分布式机器学习,而最后两章将讨论人工智能领域的神经网络深度学习。 </p>
参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页

打赏作者

蓝小孩

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值