[net]
# Testing ### 测试模式
# Training ### 训练模式
# batch=64
# subdivisions=16
---------------------------------------------------------------------------------------------------------
batch=64 ### 每一次迭代送到网络的图片数量,也叫批数量。增大这个可以让
### 网络在较少的迭代次数内完成一个epoch。在固定最大迭代次数的
### 前提下,增加batch会延长训练时间,但会更好的寻找到梯度下降的
### 方向。如果你显存够大,可以适当增大这个值来提高内存利用率。
### 这个值是需要大家不断尝试选取的,过小的话会让训练不够收敛,
### 过大会陷入局部最优。
subdivisions=32 ### 这个参数很有意思的,它会让你的每一个batch不是一下子都丢到
### 网络里。而是分成subdivision对应数字的份数,一份一份的跑
### 完后,在一起打包算作完成一次iteration。这样会降低对显存的
### 占用情况。如果设置这个参数为1的话就是一次性把所有batch的
### 图片都丢到网络里,如果为2的话就是一次丢一半。
### batch/subdivisions作为一次性送入训练器的样本数量,
### 如果内存不够大,则会将batch分割为subdivisions个子batch
---------------------------------------------------------------------------------------------------------
width=32 ### input图像的宽
height=32 ### input图像的高
channels=3 ### input图像的通道数 3为RGB彩色图片,1为灰度图,4为RGBA图,A通道表示透明度
### 以上三个参数为输入图像的参数信息width和height影响网络
### 对输入图像的分辨率,从而影响precision,只可以设置成32的倍数
---------------------------------------------------------------------------------------------------------
momentum=0.9 ### 冲量。DeepLearning1中最优化方法中的动量参数,这个值影响着梯
### 度下降 到最优值得速度,冲量的建议配置为0.9。
decay=0.0005 ### 权值衰减。使用的目的是防止过拟合,当网络逐渐过拟合时网络权值往往会变
### 大,因此,为了避免过拟合,在每次迭代过程中以某个小因子降低
### 每,decay参数越大对过拟合的抑制能力越强
### 个权值,也等效于给误差函数添加一个惩罚项,常用的惩罚项是所有
### 权重的平方乘以一个衰减常量之和。权值衰减惩罚项使得权值收敛到较小的绝对值。
angle=180 ### 图片角度变化,单位为度,假如angle=5,
### 就是生成新图片的时候随机旋转-5~5度
---------------------------------------------------------------------------------------------------------
saturation = 1.5
exposure = 1.5 ### 饱和度与曝光变化大小,tiny-yolo-voc.cfg中1到1.5倍,
### 以及1/1.5~1倍
hue=.1 ### 色调变化范围,tiny-yolo-voc.cfg中-0.1~0.1
### 在每次迭代中,会基于角度、饱和度、曝光、色调产生新的训练图片。
---------------------------------------------------------------------------------------------------------
learning_rate=0.001 ### 初始学习率。训练发散的话可以降低学习率。学习遇到瓶颈,loss不变
### 的话也可以减低学习率。
### 学习率决定了参数移动到最优值的速度快慢,如果学习率过大,
### 很可能会越过最优值导致函数无法收敛,甚至发散;反之,
### 如果学习率过小,优化的效率可能过低,算法长时间无法收敛,
### 也易使算法陷入局部最优(非凸函数不能保证达到全
### 局最优)。合适的学习率应该是在保证收敛的前提下,能尽快收
### 敛。设置较好的learning rate,需要不断尝试。在一开始的时
### 候,可以将其设大一点,这样可以使weights快一点发生改变,在
### 迭代一定的epochs之后人工减小学习率。在yolo训练中,网络训
### 练160epoches,初始学习率为0.001,在60和90epochs时将学习率除以10。
burn_in=1000 ### 在迭代次数小于burn_in时,其学习率的更新有一种方式,大于
### burn_in时,才采用policy的更新方式
max_batches = 50000 ### 最大迭代次数。训练达到max_batches后停止学习
policy=steps ### 学习策略,一般都是step这种步进式。
### 有policy:constant, steps, exp, poly, step, sig, RANDOM,constant等方式
steps=100, 25000, 35000 ### 学习率变化时的迭代次数
scales=10,.1,.1 ### 学习率变化的比率。这两个是组合一起的,举个例子:learn_rate: 0.001,
### step:100,25000,35000 scales: 10, .1, .1 这组数据的
### 意思就是在0-100次iteration期间learning rate为原始0.001,
### 在100-25000次iteration期间learning rate为原始的10倍0.01,
### 在25000-35000次iteration期间learning rate为当前值的0.1倍,
### 就是0.001, 在35000到最大iteration期间使用learning rate为
### 当前值的0.1倍,就是0.0001。随着iteration增加,降低学习率可以
### 是模型更有效的学习,也就是更好的降低train loss。
[convolutional]
batch_normalize=1 ### 是否做BN
filters=32 ### 输出多少个特征图
size=3 ### 卷积核的尺寸
stride=1 ### 做卷积运算的步长
pad=1 ### 如果pad为0,padding由 padding参数指定。如果pad为1,padding大小为size/2
activation=leaky
......
......
[convolutional]
size=1
stride=1
pad=1
filters=27 ### 每一个[region/yolo]层前的最后一个卷积层中的
### filters=(classes+1+coords)*anchors_num,
### 其中anchors_num 是该层mask的一个值.如果没有mask
### 则 anchors_num=num是这层的ancho5的意义是5个坐标,
### 论文中的tx,ty,tw,th,to。 3*(5+len(classes))
activation=linear ### 激活函数-activation
### 包括logistic, loggy, relu, elu, relie, plse, hardtan
### ,lhtan, linear, ramp, leaky, tanh, stair
[yolo] ### 在yoloV2中yolo层叫region层
mask = 6,7,8 ### 当前属于第几个预选框,这一层预测第7、8、9个 anchor boxes,
### 每个yolo层实际上只预测3个由mask定义的anchors
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
### 预测框的初始宽高,第一个是w,第二个是h,总数量是num*2,
### YOLOv2作者说anchors是使用K-MEANS获得,其实就是计算出
### 哪种类型的框比较多,可以增加收敛速度,如果不设置anchors,
### 默认是0.5;
classes=4 ### 网络需要识别的物体种类数
num=9 ### 每个grid cell预测几个box,和anchors的数量一致。当想要使
### 用更多anchors时需要调大num,且如果调大num后训练时Obj趋近0的话
### 可以尝试调大object_scale
jitter=.3 ### 通过抖动增加噪声来抑制过拟合
ignore_thresh = .5 ### 决定是否需要计算IOU误差的参数,大于thresh,IOU误差不会夹在cost function中
truth_thresh = 1
random=1 ### random为1时会启用Multi-Scale Training,随机使用不同尺
### 寸的图片进行训练,如果为0,每次训练大小与输入大小一致;
### 是否随机确定最后的预测框,显存小可设置成0
-------------------------------------------------------------------------------------------------------------------------------------------------
几个尺寸说明
(1)batch_size:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batch_size个样本训练;
(2)iteration:1个iteration等于使用batchsize个样本训练一次;
(3)epoch:1个epoch等于使用训练集中的全部样本训练一次;
训练log中各参数的意义
Region Avg IOU:平均的IOU,代表预测的bounding box和ground truth的交集与并集之比,期望该值趋近于1。
Class:是标注物体的概率,期望该值趋近于1.
Obj:期望该值趋近于1.
No Obj:期望该值越来越小但不为零.
Avg Recall:期望该值趋近1
avg:平均损失,期望该值趋近于0