斯坦福机器学习
jay&chuxu
这个作者很懒,什么都没留下…
展开
-
斯坦福机器学习笔记:梯度下降法
关于梯度下降法,很多笔记上都有,本次只记录自己在学习中遇到的问题,及自己的理解。对梯度下降法总体的理解可以参考 线性规划、梯度下降、正规方程组——斯坦福ML公开课笔记1-2 关于样本数与特征数目的关系学习线性回归的时候,假设遇到如下问题,对房屋的大小和价格需要进行一下线性拟合: 假设拟合函数为: hx=θ0+θ1x h_x=\theta_0+\theta_1x 这里对应的样本(x,y原创 2017-07-14 22:54:09 · 560 阅读 · 0 评论 -
生成学习算法
生成学习算法介绍关于生成算法的解释,可以参考1中的论述: 以前我们介绍的学习算法都是判别学习算法 ,换句话说当输入测试数据时将会直接输出测试数据归属于哪一类。而生成学习算法 则是在输入测试数据后算出针对该测试数据,每一类对应的概率,然后选取最大值。这里举一个例子,当我要知道一个人到底是男生的还是女生,判别学习算法则根据输入的特征来判断男生或者女生,但是生成学习算法则是会根据输入特征分别算出在该特原创 2017-07-29 17:58:22 · 573 阅读 · 0 评论 -
# 回归、拟合算法心得
根据斯坦福机器学习公开课整理的一点体会。记录了概念性的一些理解 ,具体的定义和证明还需要参阅有关资料。 线性拟合被拟合的样本几乎分布趋势几乎为直线的时候很多时候,我们希望通过一些样本来反应总体的特征,因此我们需要拟合曲线来判断总体的情况。 假设有如下这些个样本,看起来各点分布趋于一条直线,因此我们希望通过一条直线来描述该样本所在总体的一些特征,对总体进行预测。一般的方法就是先假设一条直线,如L=a原创 2017-07-26 19:16:09 · 10509 阅读 · 0 评论 -
VC 维
在学习斯坦福大学吴恩达先生的机器学习公开课时,对VC维这块没有弄得太懂,后来找了一些资料进行补充学习,略通一二,现把理解的内容整理出来,仅供以后参考。 问题的来源机器学习,是对问题建立数学模型。因为真实的模型未知,我们建立的模型,是否和真实的模型是一致的,是并不知道的。两者间的误差的累计叫风险。 我们建立好一个模型之后,在一个已经标注好的样本数据上进行测试,得到的结果与标注情况进行对比,其差值就是原创 2017-08-25 10:40:40 · 740 阅读 · 0 评论