【图像处理】颜色距离

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/jaych/article/details/51137341

本篇文章主要描述颜色距离及其具体颜色距离的实现。

1、颜色距离

颜色距离指的是两个颜色之间的差距,通常距离越大,两个颜色相差越大,反之,两个颜色越相近。在计算颜色距离时,有类似计算两点间欧式距离的公式一样,在RGB空间内,可以得到两个颜色之间的距离为:


这里写图片描述

其中,C1 C2表示颜色1和颜色2,C1R表示颜色1的R通道。
但是,由于RGB空间是线性的并且相互正交,而人眼的视觉系统并不是线性的,RGB空间并不能反映人眼对颜色的感知,相对应的颜色距离也不能很好的反映两个颜色是否相近。

针对这个问题,于是有了LAB颜色空间,及其对应的色差计算。

2、LAB颜色空间及色差计算

LAB颜色空间是基于人眼对颜色的感知,可以表示人眼所能感受到的所有颜色。L表示明度,A表示红绿色差,B表示蓝黄色差。两个颜色之见的色差:


这里写图片描述

ΔE 表示色差,ΔL/Δa/Δb分别表示两个颜色之间在不同分量的差值。

为了简化计算及保证计算效果,有人在RGB空间上通过公式计算出加权的欧式距离。

3、改进的加权欧式距离

以下为具体的计算方法,详细说明可以参考:链接


这里写图片描述

具体的C代码如下:

typedef struct {
   unsigned char r, g, b;
} RGB;

double ColourDistance(RGB e1, RGB e2)
{
  long rmean = ( (long)e1.r + (long)e2.r ) / 2;
  long r = (long)e1.r - (long)e2.r;
  long g = (long)e1.g - (long)e2.g;
  long b = (long)e1.b - (long)e2.b;
  return sqrt((((512+rmean)*r*r)>>8) + 4*g*g + (((767-rmean)*b*b)>>8));
}
展开阅读全文

没有更多推荐了,返回首页