组合数的递归函数

组合数的递归函数

关于一道组合数的依次计算,但是需要利用递归函数去调用,题目如下:

在这里插入图片描述

看到这道题,最开始的思路是利用基本的计算方法,分子依次相乘,除以分母依次相乘
下面展示一些 内联代码片

// 
#include<stdio.h>
int fun(int n, int i);

int main(){
	int n;
	scanf("%d",&n);
	for(int i = 0;i <= n;i++){
		if(i != n)
			printf("%d,",fun(n,i));
		else
			printf("%d",fun(n,i));
	}
	return 0;
}

int fun(int n, int i){
	int zi = 1,mu = 1; 
	int m = 1;
	if(i == 0 || i==n)
		return 1;
	else{
		for(int op = 0;op < i;op++){
			zi = zi * n;
			n--;
		}
		for(int op2 = 0;op2 < i;op2++){
			mu = mu * m;
			m++;
		}
		return zi/mu;
	}	
}

发现并无法利用函数递归,于是反思计算过程,最后回想起高中的数学公式:

C(n , k) = C (n - 1, k) + C ( n - 1 , k - 1) //注意n是下方数字

实现代码如下:

#include<stdio.h>
int fun(int n, int i);

int main(){
	int n;
	scanf("%d",&n);
	for(int i = 0;i <= n;i++){
		if(i != n)
			printf("%d,",fun(n,i));
		else
			printf("%d",fun(n,i));
	}
	return 0;
}

int fun(int n, int i){
	if(i == 0 || i==n)
		return 1;
	else return fun( n-1 , i)+ fun(n-1 , i-1);          //直接套入公式即可
} 

由此可见,在这种情况下,函数体的递归调用大大减轻编程难度。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值