从原始图像的中心到目标图像的中心,在旋转中的仿射变换必须结合 仿射变换的平移。一个在平面中(2D)的仿射变换是一个 2x2 的矩阵 A 和一个平移的向量 a - 它取得原始点 p = (x,y)到目标:Ap + a. 结合了两次变换 Ap + a 和 Bp+b,先做 A 然后是 B,软后得到了 B (Ap + a)+ b -- 另一个与矩阵 BA 和向量 Ba + b 的仿射变换。在此情况下,我们正在把旋转功能与平移合并。作为相似变换的平移具有 2x2 矩阵 I 与运动矢量 m 的特征,所以,以 Ip + m 表示,我们想首先平移到新的中心,饭后旋转它,这样,在应用 Ip + m 后我们旋转 Rp + r,产生 Rp + Rm + r,这解释了为什么我们不得不只增加两个系数。:
第一个的仿射变换效果比第二个更好,第二个的形变太大,第一个是中心仿射,第二个是原点仿射。
方法1:
def rotate_bound_white_bg(image, angle):
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
# -angle位置参数为角度参数负值表示顺时针旋转; 1.0位置参数scale是调整尺寸比例(图像缩放参数),建议0.75
M = cv2.