OpenCV笔记(二十五)直方图反向投影

一、理论

反向投影是反映直方图模型在目标图像中的分布情况,简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。通常用HSV色彩空间的HS两个通道直方图模型

二、反向投影-步骤

  1. 建立直方图模型
  2. 计算待测图像直方图并映射到模型中
  3. 从模型反向计算生成图像

三、处理步骤

  1. 加载图片imread
  2. 将图像从RGB色彩空间转换到HSV色彩空间cvtColor
  3. 计算直方图和归一化calcHist与normalize
  4. Mat与MatND其中Mat表示二维数组,MatND表示三维或者多维数据,此处均可以用Mat表示。
  5. 计算反向投影图像 - calcBackProject

四、综合例程

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src; Mat hsv; Mat hue; 
int bins = 12;
void Hist_And_Backprojection(int, void*);
int main(int argc, char** argv) {
	src = imread("D:/vcprojects/images/t1.jpg");
	if (src.empty()) {
		printf("could not load image...\n");
		return -1;
	}
	const char*  window_image = "input image";
	namedWindow(window_image, CV_WINDOW_NORMAL);
	namedWindow("BackProj", CV_WINDOW_NORMAL);
	namedWindow("Histogram", CV_WINDOW_NORMAL);

	cvtColor(src, hsv, CV_BGR2HSV);
	hue.create(hsv.size(), hsv.depth());
	int nchannels[] = { 0, 0 };
	mixChannels(&hsv, 1, &hue, 1, nchannels, 1);

	createTrackbar("Histogram Bins:", window_image, &bins, 180, Hist_And_Backprojection);
	Hist_And_Backprojection(0, 0);

	imshow(window_image, src);
	waitKey(0);
	return 0;
}

void Hist_And_Backprojection(int, void*) {
	float range[] = { 0, 180 };
	const float *histRanges = { range };
	Mat h_hist;
	calcHist(&hue, 1, 0, Mat(), h_hist, 1, &bins, &histRanges, true, false);
	normalize(h_hist, h_hist, 0, 255, NORM_MINMAX, -1, Mat());

	Mat backPrjImage;
	calcBackProject(&hue, 1, 0, h_hist, backPrjImage, &histRanges, 1, true);
	imshow("BackProj", backPrjImage);

	int hist_h = 400;
	int hist_w = 400;
	Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0));
	int bin_w = (hist_w / bins);
	for (int i = 1; i < bins; i++) {
		rectangle(histImage, 
			Point((i - 1)*bin_w, (hist_h - cvRound(h_hist.at<float>(i - 1) * (400 / 255)))),
			//Point(i*bin_w, (hist_h - cvRound(h_hist.at<float>(i) * (400 / 255)))),
			Point(i*bin_w, hist_h),
			Scalar(0, 0, 255), -1);
	}
	imshow("Histogram", histImage);

	return;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值