小知识:
HSV中的H分量,则大概对光线的变化会不敏感。如果选择的是V分量,当然光线的变量会影响结果了。如果选择的是图像的梯度,那就是检查纹路的了。等等。
工作原理:
简单的讲, 所谓反向投影就是首先计算某一特征的直方图模型,然后使用模型去寻找图像中存在的该特征。
我们使用肤色直方图为例来解释反向投影的工作原理:
假设你已经通过下图得到一个肤色直方图(Hue-Saturation), 旁边的直方图就是模型直方图 (代表手掌的皮肤色调)。你可以通过掩码操作来抓取手掌所在区域的直方图:
下图是另一张手掌图(测试图像) 以及对应的整张图像的直方图:
我们要做的就是使用模型直方图 (代表手掌的皮肤色调) 来检测测试图像中的皮肤区域。以下是检测的步骤:
a.对测试图像中的每个像素 ( p(i,j) ),获取色调数据并找到该色调 在直方图中的bin的位置。
b.查询模型直方图中对应的bin - - 并读取该bin的数值。
c.将此数值储存在新的图像中(BackProjection)。 你也可以先归一化模型直方图,这样测试图像的输出就可以在屏幕显示了。
d.通过对测试图像中的每个像素采用以上步骤, 我们得到了下面的 BackProjection 结果图:
e.使用统计学的语言, BackProjection 中储存的数值代表了测试图像中该像素属于皮肤区域的 概率 。比如以上图为例, 亮起的区域是皮肤区域的概率更大(事实确实如此),而更暗的区域则表示更低的概率(注意手掌内部和边缘的阴影影响了检测的精度)。
backproject的基本过程是:
1. 拿到 特征图像 (或模板图像)
2. 得到 特征图像的直方图
3. 拿到源图像,依据源图像的每个像素的值,在特征图像的直方图中找到对应的值,然后将直方图的值赋给新的图像,backproject算法就完成了。
对于calcBackProjectPatch,整个是基于块的形式,利用直方图做匹配,类似于模板匹配,只不过这些模板转换为直方图,而原图中以某点为基准,抠出来作对比的部分也转换为直方图,两个直方图作匹配,匹配的结果作为此点的值。 结果会是一张概率图,概率越大的地方,代表此区域与模板的相似度越高。而且,当模板小于检测的目标时,得到的结果图也能反映出检测区域的形状。利用直方图的方式&