opencv学习笔记(三十)反向投影

本文详细介绍了OpenCV中的反向投影原理,包括其在肤色检测中的应用。反向投影通过计算特征图像的直方图模型,然后在测试图像中寻找匹配的特征。通过对测试图像的每个像素进行处理,生成的BackProjection图像代表了像素属于目标特征的概率。反向投影可用于在大图像中定位小图像或模板的最匹配区域,不受光照变化、边缘遮挡等因素影响。
摘要由CSDN通过智能技术生成

小知识:
HSV中的H分量,则大概对光线的变化会不敏感。如果选择的是V分量,当然光线的变量会影响结果了。如果选择的是图像的梯度,那就是检查纹路的了。等等。
工作原理:
简单的讲, 所谓反向投影就是首先计算某一特征的直方图模型,然后使用模型去寻找图像中存在的该特征。
我们使用肤色直方图为例来解释反向投影的工作原理:
假设你已经通过下图得到一个肤色直方图(Hue-Saturation), 旁边的直方图就是模型直方图 (代表手掌的皮肤色调)。你可以通过掩码操作来抓取手掌所在区域的直方图:
这里写图片描述
下图是另一张手掌图(测试图像) 以及对应的整张图像的直方图:
这里写图片描述
我们要做的就是使用模型直方图 (代表手掌的皮肤色调) 来检测测试图像中的皮肤区域。以下是检测的步骤:
a.对测试图像中的每个像素 ( p(i,j) ),获取色调数据并找到该色调这里写图片描述 在直方图中的bin的位置。
b.查询模型直方图中对应的bin - 这里写图片描述 - 并读取该bin的数值。
c.将此数值储存在新的图像中(BackProjection)。 你也可以先归一化模型直方图,这样测试图像的输出就可以在屏幕显示了。
d.通过对测试图像中的每个像素采用以上步骤, 我们得到了下面的 BackProjection 结果图:
这里写图片描述
e.使用统计学的语言, BackProjection 中储存的数值代表了测试图像中该像素属于皮肤区域的 概率 。比如以上图为例, 亮起的区域是皮肤区域的概率更大(事实确实如此),而更暗的区域则表示更低的概率(注意手掌内部和边缘的阴影影响了检测的精度)。

backproject的基本过程是:
1. 拿到 特征图像 (或模板图像)
2. 得到 特征图像的直方图
3. 拿到源图像,依据源图像的每个像素的值,在特征图像的直方图中找到对应的值,然后将直方图的值赋给新的图像,backproject算法就完成了。

对于calcBackProjectPatch,整个是基于块的形式,利用直方图做匹配,类似于模板匹配,只不过这些模板转换为直方图,而原图中以某点为基准,抠出来作对比的部分也转换为直方图,两个直方图作匹配,匹配的结果作为此点的值。 结果会是一张概率图,概率越大的地方,代表此区域与模板的相似度越高。而且,当模板小于检测的目标时,得到的结果图也能反映出检测区域的形状。利用直方图的方式&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值