题目要求:
给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。
示例 1:
输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。
各条对角线上的所有元素均相同, 因此答案是 True 。
示例 2:
输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 "[1, 2]" 上的元素不同。
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99
解题思路:
由题目要求可知,如果一个数和他的左上角不相等,则不是托普利兹矩阵,返回false,因此判断matrix[i][j]和matrix[i-1][j-1]是否相等即可
代码展示:
class Solution {
public:
bool isToeplitzMatrix(vector<vector<int>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
for (int i = 1; i < m; i++)
{
for (int j = 1; j < n; j++)
{
if (matrix[i][j] != matrix[i - 1][j - 1])
{
return false;
}
}
}
return true;
}
};
运行结果: