LeetCode托普利兹矩阵

题目要求:

给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。

如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。

示例 1:


输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为: 
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。 
各条对角线上的所有元素均相同, 因此答案是 True 。
示例 2:


输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 "[1, 2]" 上的元素不同。

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 20
0 <= matrix[i][j] <= 99

解题思路:

由题目要求可知,如果一个数和他的左上角不相等,则不是托普利兹矩阵,返回false,因此判断matrix[i][j]和matrix[i-1][j-1]是否相等即可

代码展示:

class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size();
        int n = matrix[0].size();
        for (int i = 1; i < m; i++) 
        {
            for (int j = 1; j < n; j++) 
            {
                if (matrix[i][j] != matrix[i - 1][j - 1]) 
                {
                    return false;
                }
            }
        }
        return true;
    }
};

运行结果:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值