一、什么是线性DP?
在线性结构上进行状态转移,目标函数为特定变量的线性函数,目的是求目标函数的最大值或最小值。
二、一些例题
1、(1143)最长公共子序列
求两个字符串 S1、S2 的最长 公共子序列 长度。
dp[i][j]代表 S1 前 i 位和 S2 前 j 位的最长公共子序列长度。
int[][] dp = new int[l1 + 1][l2 + 1];
for (int i = 1; i <= l1; i++) {
for (int j = 1; j <= l2; j++) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
return dp[l1][l2];
2、(53)最大子序和
求数组中连续子数组的最大和。
用 f[i] 代表以第 i 个数为结尾的连续子数组最大和,则有
int pre = 0, res = nums[0];
for (int i : nums) {
pre = Math.max(pre + i, i); // f[i]
res = Math.max(res, pre); // 最大的f[i],即结果值
}
return res;
3、(152)乘积最大子数组
求数组中连续子数组的最大积。
用 f[i] 代表以第 i 个数为结尾的连续子数组最大积,则有
int p = 1, q = 1, res = nums[0], tmp = 1, tmq = 1;
for (int i : nums) {
tmp = Math.max(Math.max(p * i, q * i), i); //fmax[i]
tmq = Math.min(Math.min(p * i, q * i), i); //fmin[i]
p = tmp;
q = tmq;
res = Math.max(Math.max(p, q), res);
}
return res;
4、(188)买卖股票的最佳时机 IV
给定一个包含股票价格的整数数组 prices ,最多可以完成 k 笔交易。(你必须在再次购买前出售掉之前的股票)。
求最大利润。
用数组 buy 和 sell 来记录每笔交易的最大值。
int l = prices.length;
k = Math.min(k, l / 2);
int[] buy = new int[k + 1];
int[] sell = new int[k + 1];
Arrays.fill(buy, Integer.MIN_VALUE);
for (int p : prices)
for (int i = 1; i <= k; i++) {
buy[i] = Math.max(buy[i], sell[i - 1] - p);
sell[i] = Math.max(sell[i], buy[i] + p);
}
return sell[k];
5、(72)编辑距离
求一个单词转换为另一个单词的最少操作数。(增删改)
不等时分别代表:改,增,删。
int l1 = word1.length(), l2 = word2.length();
int[][] dp = new int[l1 + 1][l2 + 1];
for (int i = 0; i <= l1; i++) dp[i][0] = i;
for (int i = 0; i <= l2; i++) dp[0][i] = i;
for (int i = 1; i <= l1; i++)
for (int j = 1; j <= l2; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
else {
dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1]);
dp[i][j] = Math.min(dp[i][j], dp[i][j - 1]) + 1;
}
}
return dp[l1][l2];