线性DP

一、什么是线性DP?

在线性结构上进行状态转移,目标函数为特定变量的线性函数,目的是求目标函数的最大值或最小值。

二、一些例题

1、(1143)最长公共子序列

求两个字符串 S1、S2 的最长 公共子序列 长度。


dp[i][j]代表 S1 前 i 位和 S2 前 j 位的最长公共子序列长度。

int[][] dp = new int[l1 + 1][l2 + 1];
for (int i = 1; i <= l1; i++) {
    for (int j = 1; j <= l2; j++) {
        if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
        } else dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
    }
}
return dp[l1][l2];

2、(53)最大子序和

求数组中连续子数组的最大和。


用 f[i] 代表以第 i 个数为结尾的连续子数组最大和,则有

f[i]=max(f[i-1]+nums[i],nums[i])

int pre = 0, res = nums[0];
for (int i : nums) {
    pre = Math.max(pre + i, i);    // f[i]
    res = Math.max(res, pre);      // 最大的f[i],即结果值
}
return res;

3、(152)乘积最大子数组

求数组中连续子数组的最大积。


用 f[i] 代表以第 i 个数为结尾的连续子数组最大积,则有

f[i]=max(f_{max}[i-1]*i,f_{min}[i-1]*i,i)

int p = 1, q = 1, res = nums[0], tmp = 1, tmq = 1;
for (int i : nums) {
    tmp = Math.max(Math.max(p * i, q * i), i);    //fmax[i]
    tmq = Math.min(Math.min(p * i, q * i), i);    //fmin[i]
    p = tmp;
    q = tmq;
    res = Math.max(Math.max(p, q), res);
}
return res;

4、(188)买卖股票的最佳时机 IV

给定一个包含股票价格的整数数组 prices ,最多可以完成 k 笔交易。(你必须在再次购买前出售掉之前的股票)。

求最大利润。


用数组 buy 和 sell 来记录每笔交易的最大值。

int l = prices.length;
k = Math.min(k, l / 2);
int[] buy = new int[k + 1];
int[] sell = new int[k + 1];
Arrays.fill(buy, Integer.MIN_VALUE);
for (int p : prices)
    for (int i = 1; i <= k; i++) {
        buy[i] = Math.max(buy[i], sell[i - 1] - p);
        sell[i] = Math.max(sell[i], buy[i] + p);
    }
return sell[k];

5、(72)编辑距离

求一个单词转换为另一个单词的最少操作数。(增删改)


dp[i][j]=\left\{\begin{matrix} dp[i-1][j-1]& & s1[i-1]=s2[i-1]\\ min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])& & s1[i-1]\neq s2[i-1] \end{matrix}\right.

不等时分别代表:改,增,删。

int l1 = word1.length(), l2 = word2.length();
int[][] dp = new int[l1 + 1][l2 + 1];
for (int i = 0; i <= l1; i++) dp[i][0] = i;
for (int i = 0; i <= l2; i++) dp[0][i] = i;
for (int i = 1; i <= l1; i++)
    for (int j = 1; j <= l2; j++) {
        if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
        else {
            dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1]);
            dp[i][j] = Math.min(dp[i][j], dp[i][j - 1]) + 1;
        }
    }
return dp[l1][l2];

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值