知识图谱构建举例

  笔者在去年的时候,给出了利用深度学习来构建知识图谱的一次尝试,文章为:利用关系抽取构建知识图谱的一次尝试 ,本文将会更出更多的例子,也是笔者近一个星期的忙碌结果。
  下面为知识图谱构建的例子,由笔者原创,是从新闻或者小说中直接抽取而来,加上大量时间的人工整理而得到,下面的图片是从Neo4J导出并截图。
  例子1:《平凡的世界》实体关系图(局部):
《平凡的世界》实体关系图(局部)
  例子2:《白鹿原》实体关系图(局部):
《白鹿原》实体关系图(局部)
  例子3:政治新闻实体关系图(局部):
政治新闻实体关系图(局部)
  例子4:《神雕侠侣》实体关系图(局部):
《神雕侠侣》实体关系图(局部)
  例子5:《明朝那些事儿》实体关系图(局部):
《明朝那些事儿》实体关系图(局部)
  例子6:《曾国藩》实体关系图(局部):
《曾国藩》实体关系图(局部)

  以上展示的图以及数据放在Github上,网址为:https://github.com/percent4/knowledge_graph_demo
  关于这方面的技术和数据将会在不久后公开,代码和数据已经放在Github上,网址为:https://github.com/percent4/spo_extract_platform ,笔者将会另写文章来介绍。

  感觉大家的阅读,笔者将会在不久之后公开该技术的源代码和数据,敬请期待~

欢迎大家关注我的微信公众号:NLP奇幻之旅

知识图谱是一种用于描述实体之间关系的形化知识表示方式。Python是一种功能强大的编程语言,可以用于构建知识图谱。以下是使用Python构建知识图谱的一些步骤和方法: 1. 确定实体和关系:首先需要确定知识图谱中包含哪些实体和它们之间的关系。例如,在金庸小说中,实体可以是人物、地点、事件等,它们之间的关系可以是亲戚关系、师徒关系、敌对关系等。 2. 数据收集和处理:收集和处理数据是构建知识图谱的重要步骤。可以使用Python爬虫技术从互联网上收集数据,也可以使用Python处理已有的数据。例如,可以使用Python的pandas库对数据进行清洗和处理。 3. 知识图谱建模:使用Python的数据库neo4j可以方便地构建知识图谱。可以使用Python的py2neo库连接neo4j数据库,并使用Cypher语言创建节点和关系。例如,可以使用以下代码创建一个人物节点和一个师徒关系: ```python from py2neo import Graph, Node, Relationship # 连接neo4j数据库 graph = Graph() # 创建人物节点 person = Node("Person", name="张无忌") graph.create(person) # 创建师徒关系 master = Node("Person", name="张三丰") apprentice = person relationship = Relationship(master, "师徒", apprentice) graph.create(relationship) ``` 4. 可视化:使用Python的可视化库可以将知识图谱可视化。例如,可以使用Python的matplotlib库绘制知识图谱的节点和关系。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值