NLP(六十八)使用Optimum进行模型量化

  本文将会介绍如何使用HuggingFace的Optimum,来对微调后的BERT模型进行量化(Quantization)。
  在文章NLP(六十七)BERT模型训练后动态量化(PTDQ)中,我们使用PyTorch自带的PTDQ(Post Training Dynamic Quantization)量化策略对微调后的BERT模型进行量化,取得了模型推理性能的提升(大约1.5倍)。本文将尝试使用Optimum量化工具。

Optimum介绍

  OptimumTransformers 的扩展,它提供了一组性能优化工具,可以在目标硬件上以最高效率训练和运行模型。
  Optimum针对不同的硬件,提供了不同的优化方案,如下表:

硬件安装命令
ONNX runtimepython -m pip install optimum[onnxruntime]
Intel Neural Compressor (INC)python -m pip install optimum[neural-compressor]
Intel OpenVINOpython -m pip install optimum[openvino,nncf]
Graphcore IPUpython -m pip install optimum[graphcore]
Habana Gaudi Processor (HPU)python -m pip install optimum[habana]
GPUpython -m pip install optimum[onnxruntime-gpu]

  本文将会介绍基于ONNX的模型量化技术。ONNX(英语:Open Neural Network Exchange)是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch、MXNet)可以采用相同格式存储模型数据并交互。

模型量化

  我们使用的微调后的BERT模型采用文章NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调中给出的文本分类模型。
  首先,我们先加载PyTorch中的设备(CPU)。

# load device
import torch

device = torch.device("cpu")

  接着,我们使用optimum.onnxruntime模块加载模型和tokenizer,并将模型保存为onnx格式。

from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer
import torch

model_id = "./sougou_test_trainer_256/checkpoint-96"
onnx_path = "./sougou_test_trainer_256/onnx_256"

# load vanilla transformers and convert to onnx
model = ORTModelForSequenceClassification.from_pretrained(model_id, from_transformers=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# save onnx checkpoint and tokenizer
model.save_pretrained(onnx_path)
tokenizer.save_pretrained(onnx_path)

此时,会多出onnx_256文件夹,保存模型为model.onnx。
保存为onnx模型
输出结果为:

('./sougou_test_trainer_256/onnx_256\\tokenizer_config.json',
 './sougou_test_trainer_256/onnx_256\\special_tokens_map.json',
 './sougou_test_trainer_256/onnx_256\\vocab.txt',
 './sougou_test_trainer_256/onnx_256\\added_tokens.json',
 './sougou_test_trainer_256/onnx_256\\tokenizer.json')

  使用transfomers中的pipeline对模型进行快速推理。

from transformers import pipeline

vanilla_clf = pipeline("text-classification", model=model, tokenizer=tokenizer)
vanilla_clf("这期节目继续关注中国篮球的话题。众所周知,我们已经结束了男篮世界杯的所有赛程,一胜四负的一个成绩,甚至比上一届的世界杯成绩还要差。因为这一次我们连奥运会落选赛也都没有资格参加,所以,连续两次错过了巴黎奥运会的话,对于中国篮协,还有对于姚明来说,确实成为了他任职的一个最大的败笔。对于球迷非常关注的一个话题,乔尔杰维奇是否下课,可能对于这个悬念来说也都是暂时有答案了。")

输出结果如下:

[{'label': 'LABEL_0', 'score': 0.9963239431381226}]

  对ONNX模型进行优化。

from optimum.onnxruntime import ORTOptimizer
from optimum.onnxruntime.configuration import OptimizationConfig

# create ORTOptimizer and define optimization configuration
optimizer = ORTOptimizer.from_pretrained(model)
optimization_config = OptimizationConfig(optimization_level=99) # enable all optimizations

# apply the optimization configuration to the model
optimizer.optimize(
    save_dir=onnx_path,
    optimization_config=optimization_config,
)

此时,优化后的模型为model_optimized.onnx。

  对优化后的模型进行推理。

from transformers import pipeline

# load optimized model
optimized_model = ORTModelForSequenceClassification.from_pretrained(onnx_path, file_name="model_optimized.onnx")

# create optimized pipeline
optimized_clf = pipeline("text-classification", model=optimized_model, tokenizer=tokenizer)
optimized_clf("今年7月,教育部等四部门联合印发了《关于在深化非学科类校外培训治理中加强艺考培训规范管理的通知》(以下简称《通知》)。《通知》针对近年来校外艺术培训的状况而发布,并从源头就校外艺术培训机构的“培训主体、从业人员、招生行为、安全底线”等方面进行严格规范。校外艺术培训之所以火热,主要在于高中阶段艺术教育发展迟滞于学生需求。分析教育部数据,2021年艺术学科在校生占比为9.84%,高于2020年的9.73%;2020至2021年艺术学科在校生的年增长率为5.04%,远高于4.28%的总在校生年增长率。增长的数据,是近年来艺考招生连年火热的缩影,在未来一段时间内,艺考或将在全国范围内继续保持高热度。")

输出结果为:

[{'label': 'LABEL_3', 'score': 0.9926980137825012}]

  对优化后的ONNX模型再进行量化,代码为:

from optimum.onnxruntime import ORTQuantizer
from optimum.onnxruntime.configuration import AutoQuantizationConfig

# create ORTQuantizer and define quantization configuration
dynamic_quantizer = ORTQuantizer.from_pretrained(optimized_model)
dqconfig = AutoQuantizationConfig.avx2(is_static=False, per_channel=False)

# apply the quantization configuration to the model
model_quantized_path = dynamic_quantizer.quantize(
    save_dir=onnx_path,
    quantization_config=dqconfig,
)

此时量化后的模型为model_optimized_quantized.onnx。比较量化前后的模型大小,代码为:

import os

# get model file size
size = os.path.getsize(os.path.join(onnx_path, "model_optimized.onnx"))/(1024*1024)
quantized_model = os.path.getsize(os.path.join(onnx_path, "model_optimized_quantized.onnx"))/(1024*1024)

print(f"Model file size: {size:.2f} MB")
print(f"Quantized Model file size: {quantized_model:.2f} MB")

输出结果为:

Model file size: 390.17 MB
Quantized Model file size: 97.98 MB

  最后,加载量化后的模型,代码为:

# load quantization model
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer

quantized_model = ORTModelForSequenceClassification.from_pretrained(onnx_path, file_name="model_optimized_quantized.onnx").to(device)
tokenizer = AutoTokenizer.from_pretrained(onnx_path)

推理实验

  在进行模型推理实验前,先加载测试数据集。

import pandas as pd

test_df = pd.read_csv("./data/sougou/test.csv")

  使用量化前的模型进行推理,记录推理时间,代码如下:

# original model evaluate
import numpy as np
import time

cost_time_list = []
s_time = time.time()
true_labels, pred_labels = [], [] 
for i, row in test_df.iterrows():
    row_s_time = time.time()
    true_labels.append(row["label"])
    encoded_text = tokenizer(row['text'], max_length=256, truncation=True, padding=True, return_tensors='pt')
    # print(encoded_text)
    logits = model(**encoded_text)
    label_id = np.argmax(logits[0].detach().numpy(), axis=1)[0]
    pred_labels.append(label_id)
    cost_time_list.append((time.time() - row_s_time) * 1000)
    if i % 100:
    	print(i, (time.time() - row_s_time) * 1000, label_id)

print("avg time:", (time.time() - s_time) * 1000 / test_df.shape[0])
print("P50 time:", np.percentile(np.array(cost_time_list), 50))
print("P95 time:", np.percentile(np.array(cost_time_list), 95))

输出结果为:

0 710.2577686309814 0
100 477.72765159606934 1
200 616.3530349731445 2
300 509.63783264160156 3
400 531.57639503479 4

avg time: 501.0757282526806
P50 time: 504.6522617340088
P95 time: 623.9353895187337

对输出结果进行指标评级,代码为:

from sklearn.metrics import classification_report

print(classification_report(true_labels, pred_labels, digits=4))

  重复上述代码,将模型替换为量化前ONNX模型(model.onnx),优化后ONNX模型(model_oprimized.onnx),量化后ONNX模型(model_optimized_quantized.onnx),进行推理时间(单位:ms)统计和推理指标评估,结果见下表:

模型平均推理时间P95推理时间weighted F1
量化前ONNX模型501.1623.90.9717
优化后ONNX模型484.6629.60.9717
量化后ONNX模型361.5426.90.9738

  对比文章NLP(六十七)BERT模型训练后动态量化(PTDQ)中的推理结果,原始模型的平均推理时间为666.6ms,weighted F1值为0.9717,我们有如下结论:

  • ONNX模型不影响推理效果,但在平均推理时间上提速约1.33倍
  • 优化ONNX模型不影响推理效果,但在平均推理时间上提速约1.38倍
  • 量化后的ONNX模型影响推理效果,一般会略有下降,本次实验结果为提升,但在平均推理时间上提速约1.84倍,由于PyTorch的PTDQ(模型训练后动态量化)

总结

  本文介绍了如何使用HuggingFace的Optimum,来对微调后的BERT模型进行量化(Quantization),在optimum.onnxruntime模块中,平均推理时间提速约1.8倍。
  本文已开源至Github,网址为:https://github.com/percent4/dynamic_quantization_on_bert
  本文已开通个人博客,欢迎大家访问:https://percent4.github.io/

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

### 参考文献
  1. NLP(六十六)使用HuggingFace中的Trainer进行BERT模型微调:https://blog.csdn.net/jclian91/article/details/132644042
  2. NLP(六十七)BERT模型训练后动态量化(PTDQ):https://blog.csdn.net/jclian91/article/details/132644042
  3. Optimum: https://huggingface.co/docs/optimum/index
  4. Optimizing Transformers with Hugging Face Optimum: https://www.philschmid.de/optimizing-transformers-with-optimum
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言模型工具自然语言处理和语音识别中必须的语言

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值