链接: http://poj.org/problem?id=1321
棋盘问题
关键词:DFS
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 当为-1 -1时表示输入结束。 随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C < 2^31)。
SampleInput
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
SampleOutput
2
1
Analyze
DFS 搜索, 可以直接看代码。。。
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n, k, ans;
char map[10][10];
bool vis[10];
void DFS(int cur, int cnt)
{
if(n-cur < k-cnt)//所描述的含义是:我本来还要放置cnt个棋子,然而可以放置的位置已经不够了o
return;
if(cnt > k)//表示的含义就是我已经放置k个棋子咯,满足条件,这个方案可行,可行方案数加1
{
ans++;
return;
}
for(int j=1; j<=n; j++)
{
if(map[cur][j]=='#' && !vis[j])
{
vis[j] = true;
DFS(cur+1, cnt+1);
vis[j] = false;
}
}
DFS(cur+1, cnt);//表示这一行我们不放置棋子,嘿嘿。
}
int main()
{
while(scanf("%d%d", &n,&k) != EOF)
{
memset(vis, false, sizeof(vis));
ans = 0;
getchar();
if(n==-1 && k==-1)
break;
for(int i=1; i<=n; i++)
gets(map[i] + 1);
// for(int i=1; i<=n; i++)
// puts(map[i]+1);
DFS(1,1);
printf("%d\n", ans);
}
return 0;
}