POJ 1321 棋盘问题

链接: http://poj.org/problem?id=1321

棋盘问题

关键词:DFS

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 当为-1 -1时表示输入结束。 随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C < 2^31)。

SampleInput

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

SampleOutput

2
1

Analyze

DFS 搜索, 可以直接看代码。。。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n, k, ans;

char map[10][10];
bool vis[10];

void DFS(int cur, int cnt)
{
    if(n-cur < k-cnt)//所描述的含义是:我本来还要放置cnt个棋子,然而可以放置的位置已经不够了o
        return;
    if(cnt > k)//表示的含义就是我已经放置k个棋子咯,满足条件,这个方案可行,可行方案数加1
    {
        ans++;
        return;
    }
    for(int j=1; j<=n; j++)
    {
        if(map[cur][j]=='#' && !vis[j])
        {
            vis[j] = true;
            DFS(cur+1, cnt+1);
            vis[j] = false;
        }
    }
    DFS(cur+1, cnt);//表示这一行我们不放置棋子,嘿嘿。
}
int main()
{
    while(scanf("%d%d", &n,&k) != EOF)
    {
        memset(vis, false, sizeof(vis));
        ans = 0;
        getchar();
        if(n==-1 && k==-1)
            break;
        for(int i=1; i<=n; i++)
            gets(map[i] + 1);

//        for(int i=1; i<=n; i++)
//            puts(map[i]+1);
        DFS(1,1);
        printf("%d\n", ans);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值