八数码问题-A*算法

文章介绍了如何运用A*算法解决经典的八数码问题,该问题涉及到在一个3x3网格中通过最少的移动次数使数字排列达到特定顺序。A*算法结合估价函数和优先队列进行搜索优化,确保找到最优解。代码示例使用C++实现,通过深度优先搜索策略找到解决方案。
摘要由CSDN通过智能技术生成

八数码问题是一个非常经典的爆搜问题,可以使用双向广搜优化,这里讨论A*算法的优化方式。

A*算法

A*(A-star)算法是一种带有估价函数的优先队列BFS。只要保证对于任意状态state,都有f(state) <= g(state),A*算法就能在目标状态第一次从堆中被取出时得到最优解,并且在搜索过程中每个状态只需要被拓展一次。

A*算法成立的关键条件在于估价函数的估价必须小于或等于真实的最短距离。这样能保证所有估价函数值(f(state)+d(state))小于真实最短距离 (d(end)) 的点被更新(更新对于一个点可以有多次),从而保证目标点在第一次取出时路径最优。

八数码问题:

在一个 3×3 的网格中,1~8这 8 个数字和一个 X 恰好不重不漏地分布在这3×3 的网格中。

例如:

1 2 3
X 4 6
7 5 8

在游戏过程中,可以把 X 与其上、下、左、右四个方向之一的数字交换(如果存在)。

我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 X

例如,示例中图形就可以通过让 X 先后与右、下、右三个方向的数字交换成功得到正确排列。

交换过程如下:

1 2 3   1 2 3   1 2 3   1 2 3
X 4 6   4 X 6   4 5 6   4 5 6
7 5 8   7 5 8   7 X 8   7 8 X

把 X 与上下左右方向数字交换的行动记录为 udlr

现在,给你一个初始网格,请你通过最少的移动次数,得到正确排列。

输入格式

输入占一行,将3×3 的初始网格描绘出来。

例如,如果初始网格如下所示:

1 2 3 
x 4 6 
7 5 8 

则输入为:1 2 3 x 4 6 7 5 8

输出格式

输出占一行,包含一个字符串,表示得到正确排列的完整行动记录。

如果答案不唯一,输出任意一种合法方案即可。

如果不存在解决方案,则输出 unsolvable

输入样例:

2  3  4  1  5  x  7  6  8 

输出样例

ullddrurdllurdruldr

解题代码:

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,string> PIS;

int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
char ch[4] = {'u', 'r', 'd', 'l'};
unordered_map<string,bool> st; //标记一个点有没有从堆中取出过,对于取出的点不需要再进行重复的拓展
unordered_map<string, int> d;//记录点到起点的距离,这里不一定是最短距离!所以最终得到的d[end]不是最短距离!
unordered_map<string, pair<string, char>> pre;//记录前继节点与路径

//利用曼哈顿距离求估价
int f(string s)
{
    int res = 0;
    for (int i = 0; i < 9; i++)
        if (s[i] != 'x')
        {
            int t = s[i] - '1';
            res += abs(i / 3 - t / 3) + abs(i % 3 - t % 3);
        }
    return res;
}

string dfs(string start)
{
    string ans;
    d[ans] = 0;
    priority_queue<PIS, vector<PIS>, greater<PIS>> q; //优先队列BFS
    q.push({f(start), start});
    string s;
    while (q.size())
    {
        PIS e = q.top();
        q.pop();
        s = e.second;
        if (s == "12345678x")
            break;
        if(st[s])continue; //取出的点不需要再进行重复的拓展
        st[s]=true;
        int x, y;
        for (int i = 0; i < 9; i++)
            if (s[i] == 'x')
            {
                x = i / 3;
                y = i % 3;
                break;
            }

        string ne = s;
        for (int i = 0; i < 4; i++)
        {
            int a = x + dx[i], b = y + dy[i];
            if (a >= 0 && b >= 0 && a < 3 && b < 3)
            {
                swap(ne[a * 3 + b], ne[x * 3 + y]);
                if (d.count(ne) == 0||d[ne]>d[s]+1)  //由于d数组记录的距离不一定是最短距离,所以这个条件不能少
                {
                    d[ne] = d[s] + 1;
                    pre[ne] = {s, ch[i]};
                    q.push({d[ne] + f(ne), ne});
                }
                swap(ne[a * 3 + b], ne[x * 3 + y]);
            }
        }
    }
    while (s != start)
    {
        ans += pre[s].second;
        s = pre[s].first;
    }
    reverse(ans.begin(), ans.end());
    return ans;
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    string c, g, l;
    int li = 0;
    while (cin >> c)
    {
        g += c;
        if (c != "x")
            l += c;
    }
    for (int i = 0; i < 8; i++)
        for (int j = i + 1; j < 8; j++)
            if (l[i] > l[j])
                li++;
    if (li & 1)
        cout << "unsolvable" << endl;
    else
        cout << dfs(g) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值