蒙特卡罗是一种随机模拟方法,它通过一组随机数(通常是一组非常大的数)来逼近要求的某个值。在《Java语言程序设计—基础》第4章中有个例子是用它来求圆周率,越来越喜欢这本书了 :)。
它的原理是这样的,给定一个正方形,画其内切圆,如下图:
我们在正方形内随机打点,假设整个正方形几乎被我们打满了点,那么落入圆内概率就是:圆面积 / 正方形面积,换成公式就是:pi * r * r / 2r * 2r = pi / 4。当我们模拟一组数据后,求出落在圆内的点的比率,就可以得出一个近似的PI了。Java代码如下 :
class MonteCarloSimulation
{
public static void main(String[] args)
{
final int NUMBER_OF_TRIALS = 2000000;
int numberOfHits = 0;
for (int i = 0; i < NUMBER_OF_TRIALS; i++)
{
// x, y 是落入正方形内点的坐标
double x = Math.random(); // 书上的代码是 double x = Math.random() * 2 - 1; 但我认为直接用Math.random() 就可以
double y = Math.random();
// 如果坐标点: x^2 + y^2 <= 1,就是落入圆内的点坐标
if (x * x + y * y <= 1)
{
numberOfHits++;
}
}
double pi = 4.0 * numberOfHits / NUMBER_OF_TRIALS;
System.out.println("PI is " + pi);
}
}
我运行了10次,得到的数据分别为:
PI is 3.141668
PI is 3.144964
PI is 3.139272
PI is 3.141644
PI is 3.141668
PI is 3.137688
PI is 3.144552
PI is 3.138961
PI is 3.144964
PI is 3.144152
看得出,这个值只能算是个近似值了。模拟的数据到了百万级这个值就很接近了,再往上也不会有很大的改善。